
1

Masaki Waga

Kyoto University

2025 December 15th, QuantFormal 2025

Specification-Based Testing
of Cyber-Physical Systems

via Black-Box Checking

Joint work with Junya Shijubo, Tsubasa Matsumoto,  
Kazuki Watanabe, and Kohei Suenaga

M. Waga (Kyoto U.)2

Safety Critical CPS

https://www.bbc.com/news/live/cvg4y6g74ert 
https://www.bbc.com/news/articles/cvg02rdxxz7o

https://www.bbc.com/news/live/cvg4y6g74ert
https://www.bbc.com/news/articles/cvg02rdxxz7o

M. Waga (Kyoto U.)3

✔
✘
?

Prob.

Param.

：
：

Formal Modeling
Verification

e.g. Model Checking🤔

Q. How to Trust
Safety Critical Systems?

：
：

M. Waga (Kyoto U.)3

✔
✘
?

Prob.

Param.

：
：

Formal Modeling
Verification

e.g. Model Checking

Q. How to Trust
Safety Critical Systems?

：
：

Approach 1: Guarantee safety or find bugs via model checking

M. Waga (Kyoto U.)3

✔
✘
?

Prob.

Param.

：
：

Formal Modeling
Verification

e.g. Model Checking

Black-boxQ. How to Trust
Safety Critical Systems?

：
：

Approach 1: Guarantee safety or find bugs via model checking

Modeling is not
difficult!

M. Waga (Kyoto U.)

Testing

：
：

4

Approach 2: Sample inputs, feed it to the system, reveal bugs

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

Approach 2: Sample inputs, feed it to the system, reveal bugs

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

0 0 1 0 1 0

Approach 2: Sample inputs, feed it to the system, reveal bugs

0 0 1 0 1 0

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

0 0 1 0 1 0 1 1 1 0 0 0

Approach 2: Sample inputs, feed it to the system, reveal bugs

✔

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

0 0 1 0 1 0 1 1 1 0 0 0

1 1 0 1 1 0 0 1 0 1 1 0

Approach 2: Sample inputs, feed it to the system, reveal bugs

✔

✔

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

0 0 1 0 1 0 1 1 1 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

0 1 0 1 1 0

1 0 1 0 0 0

Approach 2: Sample inputs, feed it to the system, reveal bugs

✔

✔

✔

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

0 0 1 0 1 0 1 1 1 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

0 1 0 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 1 0 1 1

Approach 2: Sample inputs, feed it to the system, reveal bugs

✔

✔

✔

✘

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

0 0 1 0 1 0 1 1 1 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

0 1 0 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 1 0 1 1

Approach 2: Sample inputs, feed it to the system, reveal bugs

✔

✔

✔

✘

Can be biased to pick
less safe inputs

(cf. robustness of
signal temporal logic

[Fainekos & Pappas, TCS’09])

M. Waga (Kyoto U.)

TestingSampling-based

：
：

4

0 0 1 0 1 0 1 1 1 0 0 0

1 1 0 1 1 0

0 1 0 0 1 0

0 1 0 0 0 0

0 1 0 1 1 0

1 0 1 0 0 0

0 1 1 0 1 1

Approach 2: Sample inputs, feed it to the system, reveal bugs

✔

✔

✔

✘

Limitation:
Uniform sampling → hard to find rare unsafe behavior
Biased sampling → Inefficient to test multiple requirements

Can be biased to pick
less safe inputs

(cf. robustness of
signal temporal logic

[Fainekos & Pappas, TCS’09])

M. Waga (Kyoto U.)5

Black-Box Checking (BBC)
Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

：
：

M. Waga (Kyoto U.)5

Black-Box Checking (BBC)

Automata Learning

Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

：
：

M. Waga (Kyoto U.)5

Black-Box Checking (BBC)

Automata Learning

Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

：
：

M. Waga (Kyoto U.)5

Black-Box Checking (BBC)

Automata Learning Formal Verification
with Model Checking

Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

：
：

M. Waga (Kyoto U.)5

Black-Box Checking (BBC)

✔
✘

Automata Learning Formal Verification
with Model Checking

Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

：
：

M. Waga (Kyoto U.)5

Black-Box Checking (BBC)

✔
✘

Automata Learning Formal Verification
with Model Checking

Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

：
：

Good theoretical
properties, e.g.,

convergence

M. Waga (Kyoto U.)5

Black-Box Checking (BBC)

✔
✘

Automata Learning Formal Verification
with Model Checking

Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

：
：

Good theoretical
properties, e.g.,

convergence Reusable for
multiple requirements

M. Waga (Kyoto U.)

Summary of This Talk

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking

6

M. Waga (Kyoto U.)

Outline

7

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking

M. Waga (Kyoto U.)

Outline

7

• Preliminaries

• Active automata learning

• Black-box checking

•• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]

Learner

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]

Learner Oracle

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]

Questions: , w ∈ Ltarget L(𝒜hyp) = Ltarget
??

Learner Oracle

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]Membership

Questions: , w ∈ Ltarget L(𝒜hyp) = Ltarget
??

Learner Oracle

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]Membership Equivalence

Questions: , w ∈ Ltarget L(𝒜hyp) = Ltarget
??

Learner Oracle

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]

Answers: Yes, No, Evidence w ∈ L(𝒜hyp) △ Ltarget

Membership Equivalence

Questions: , w ∈ Ltarget L(𝒜hyp) = Ltarget
??

Learner Oracle

M. Waga (Kyoto U.)8

Active Automata Learning
[Angluin, Inf. Comput.’87]

Answers: Yes, No, Evidence w ∈ L(𝒜hyp) △ Ltarget

Membership Equivalence

Questions: , w ∈ Ltarget L(𝒜hyp) = Ltarget
??

Learner Oracle

is modeled by

M. Waga (Kyoto U.)9

Idea: Find Good Prefixes/Suffixes

a

b

a

b

a

b

b

a

a

b

a

b

a

b

a

b

b

a

"

a

b

ab

aba

abb

ba

baa

bab

aaaa

aabb

aa

bb

aaa

aab

bba

bbb

aaab

aaba

Target DFA
Prefix tree

Unrolling/Sampling

…

…

…

Test Nerode-equivalence, i.e.,

M. Waga (Kyoto U.)9

Idea: Find Good Prefixes/Suffixes

a

b

a

b

a

b

b

a

a

b

a

b

a

b

a

b

b

a

"

a

b

ab

aba

abb

ba

baa

bab

aaaa

aabb

aa

bb

aaa

aab

bba

bbb

aaab

aaba

Target DFA
Prefix tree

Unrolling/Sampling

Prefixes to
cover states

P

…

…

…

Test Nerode-equivalence, i.e.,

M. Waga (Kyoto U.)9

Idea: Find Good Prefixes/Suffixes

a

b

a

b

a

b

b

a

a

b

a

b

a

b

a

b

b

a

"

a

b

ab

aba

abb

ba

baa

bab

aaaa

aabb

aa

bb

aaa

aab

bba

bbb

aaab

aaba

Target DFA
Prefix tree

Unrolling/Sampling

Prefixes to
cover states

P

…

…

…Suffixes to
distinguish

prefixes

S

Test Nerode-equivalence, i.e.,

M. Waga (Kyoto U.)

Outline of Active Automata Learning
1. Initialize ,

2. Increase and to satisfy certain conditions, 
e.g., all the successors are constructed

3. Construct a hypothesis DFA and ask eq. query 
→ if , the learning finishes

4. Refine P and S using  
→ go back to 2.

P ← {ε} S ← {ε}

P S

𝒜hyp
L(𝒜hyp) = Ltgt

w ∈ L(𝒜hyp) △ Ltgt

10

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

11

[Peled et al., FORTE’99]
Inputs

• Black-box system under test

• .

• preserves prefixes: .

• (Safety) ω regular language

Output (informal): One of the following

• “Likely ” + Mealy machine approximating s.t.
.

• s.t. witnesses the violation of

ℳ : Σ∞ → (2AP)∞

∀σ ∈ Σ∞ |σ | = |ℳ(σ) |
ℳ ∀w ∈ Σω, i ℳ(w |[1,…,i]) = ℳ(w) |[1,…,i]

φ ⊆ (2AP)ω

ℳ ⊧ φ ℳ′￼ ℳ
∀σ ∈ Σω ℳ′￼(σ) ∈ φ

σ ∈ Σ* ℳ(σ) ∈ (2AP)* φ

Deterministic

Finite or infinite sequence

M. Waga (Kyoto U.)12

Black-Box Checking (BBC)

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

[Peled et al., FORTE’99]

M. Waga (Kyoto U.)

1. Initialize ,

2. Increase and to satisfy certain conditions, 
e.g., all the successors are constructed

3. Construct a Mealy machine and ask eq. query 
→ if , learning finishes

4. Refine P and S using s.t.  
→ go back to 2

P ← {ε} S ← {ε}

P S

ℳ′￼

∀w ∈ Σ* . ℳ(w) = ℳ′￼(w)

σ ∈ Σ* ℳ(σ) ≠ ℳ′￼(σ)

Active Learning of Mealy Machine ℳ′￼

13

M. Waga (Kyoto U.)

1. Initialize ,

2. Increase and to satisfy certain conditions, 
e.g., all the successors are constructed

3. Construct a Mealy machine and ask eq. query 
→ if , learning finishes

4. Refine P and S using s.t.  
→ go back to 2

P ← {ε} S ← {ε}

P S

ℳ′￼

∀w ∈ Σ* . ℳ(w) = ℳ′￼(w)

σ ∈ Σ* ℳ(σ) ≠ ℳ′￼(σ)

Construction of Mealy Machine
in BBC

ℳ′￼

14

Used for approx. autom.
construction

M. Waga (Kyoto U.)15

Black-Box Checking (BBC)

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

[Peled et al., FORTE’99]

M. Waga (Kyoto U.)15

Black-Box Checking (BBC)

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

[Peled et al., FORTE’99]

M. Waga (Kyoto U.)

Model Checking in BBC

Def (safety property). 
An ω-regular property represents a safety property if for
any violating , there is a prefix of
such that for any , also violates .

Examples (in LTL): , , and

Assumption: Model checkers return a finite witness of a violation

φ
w ∈ (2AP)ω φ u ∈ (2AP)* w

v ∈ (2AP)ω u ⋅ v φ

□ p □ (p → ◯q) pU(q ∨ G □ p)

16

We want a finite witness of violation 
→ focus on safety properties

Properties with finite witness of violation

M. Waga (Kyoto U.)17

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

M. Waga (Kyoto U.)17

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

M. Waga (Kyoto U.)

Test with the Witness ℳ σ
• Model checker returns s.t. .

• We check if we also have .

• Note: We can do this because is safety and ω regular

• Yes → we finish the testing

• No → is an evidence of

• We use to refine P and S if we have

σ ∈ Σ* ∀u ∈ (2AP)ω

ℳ′￼(σ) ⋅ u ∉ φ

∀u ∈ (2AP)ω ℳ(σ) ⋅ u ∉ φ

φ

σ ℳ ≠ ℳ′￼

σ ℳ(σ) ≠ ℳ′￼(σ)

18

M. Waga (Kyoto U.)19

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

M. Waga (Kyoto U.)19

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

M. Waga (Kyoto U.)

Equivalence Testing

Theoretically: Automata-based conformance test 
e.g., W-method [Chow, TSE’78], Wp-method [Fujiwara+, TSE’91]

• 😀 Equivalence can be guaranteed

• ☹ # of states is necessary for soundness

Practically: Random sampling of

• 😀 PAC guarantee can be obtained [Angluin, Inf. Comput. 87]

• ☹ Not good at “rare” cex

σ

20

Goal: find s.t. to refine σ ∈ Σ* ℳ(σ) ≠ ℳ′￼(σ) S

 and are likely
equivalent for most of

ℳ ℳ′￼

σ

M. Waga (Kyoto U.)21

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

M. Waga (Kyoto U.)21

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

Difficult

M. Waga (Kyoto U.)

Outline
• Preliminaries

• Active automata learning

• Black-box checking

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking
22

M. Waga (Kyoto U.)

Equivalence Test Dedicated to BBC?

Eq. test for general automata learning: test overall equivalence

• Conformance test: Ensure the equivalence for all the
transitions/states

• Random test: Ensure the equivalence for many input words

Observation: BBC’s goal is to show that violates  
→ How about focusing on “less safe” parts in eq. test?

ℳ φ

23

assuming the size of ℳ

Refinement of focusing on
“less safe” parts of

ℳ′￼

ℳ

M. Waga (Kyoto U.)

Robustness [Fainekos & Pappas, TCS’09]: “distance” from unsafe area

• Sample with small robustness in equivalence test

• Black-box optimization can be used

• e.g. genetic algorithms

σ ∈ Σ*

24

[Waga, HSCC’20]

Idea: sample “less safe” inputs by minimizing robustness

Robustness-Guided Equivalence Test

t

v Unsafe area

margin from unsafe area 
(robustness)Generalized for

Booleans, Until, …

Example: □ (v < 120)

M. Waga (Kyoto U.)25

Robustness-Guided Equivalence Test

Gen. population U ⊊ Σ*

 ?∀σ ∈ U . ℳ(σ) = ℳ′￼(σ)

Gen. next population U'

Selection: σ ∈ U' s.t.
 is small ρ(ℳ(σ), φ)

No

Yes

Return σ
U := U'

Crossover and mutation
in genetic algorithms

robustness of
 wrt φ ℳ(σ)

M. Waga (Kyoto U.)

Why as Fitness?ρ(ℳ(σ), φ)
Assumption:  
 i.e. ∃σ.

Fact: i.e. 
 

 by model checking

Heuristic: Find σ s.t.  
 in  

 is small

ℳ /⊧ φ
ρ(ℳ(σ), φ) ≤ 0

ℳ′￼ ⊧ φ
∀σ . ρ(ℳ′￼(σ), φ) ≥ 0

ℳ(σ) ≠ ℳ′￼(σ)
ρ(ℳ(σ), φ)

26

x

x

x

x
x+ +

+ +

+
+

ρ(ℳ(σ), φ)

Input σ

xx

Robustness

+

0

ρ(ℳ′￼(σ), φ)x +

M. Waga (Kyoto U.)

Why as Fitness?ρ(ℳ(σ), φ)
Assumption:  
 i.e. ∃σ.

Fact: i.e. 
 

 by model checking

Heuristic: Find σ s.t.  
 in  

 is small

ℳ /⊧ φ
ρ(ℳ(σ), φ) ≤ 0

ℳ′￼ ⊧ φ
∀σ . ρ(ℳ′￼(σ), φ) ≥ 0

ℳ(σ) ≠ ℳ′￼(σ)
ρ(ℳ(σ), φ)

26

x

x

x

x
x+ +

+ +

+
+

ρ(ℳ(σ), φ)

Input σ

xx

Robustness

+

0

 and deviateℳ ℳ′￼

ρ(ℳ′￼(σ), φ)x +

M. Waga (Kyoto U.)

Outline
• Preliminaries

• Active automata learning

• Black-box checking

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking
27

M. Waga (Kyoto U.)28

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

M. Waga (Kyoto U.)28

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

Difficult

M. Waga (Kyoto U.)

Finding a Deviation via Model checking
of Strengthened Spec.

Observation 1: model checking of is typically more
efficient than equivalent testing

• Particularly when running is time consuming

Observation 2: s.t. and
for a bit stronger than is often useful for BBC

• Stronger:

• If is much stronger than , we cannot bias the learning

ℳ′￼

ℳ

σ ∈ Σ* ℳ(σ) ≠ ℳ′￼(σ) ℳ′￼(σ) ⊈ ψ
ψ φ

ψ ⊊ φ

ψ φ
29

Idea: find “near unsafe” inputs via model checking

Running for many timesℳ

M. Waga (Kyoto U.)30

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

BBC + Model checking with Strengthened Spec.
[Shijubo et al., RV’21]

Verify against ℳ′￼ ψ✔

Test if 
 ℳ(σ) = ℳ′￼(σ)

✘ w/ input σ

✘

✔
Difficult

M. Waga (Kyoto U.)30

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

BBC + Model checking with Strengthened Spec.
[Shijubo et al., RV’21]

Verify against ℳ′￼ ψ✔

Test if 
 ℳ(σ) = ℳ′￼(σ)

✘ w/ input σ

✘

✔

New

New

Difficult

M. Waga (Kyoto U.)30

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

BBC + Model checking with Strengthened Spec.
[Shijubo et al., RV’21]

Verify against ℳ′￼ ψ✔

Test if 
 ℳ(σ) = ℳ′￼(σ)

✘ w/ input σ

✘

✔

New

New

Difficult

M. Waga (Kyoto U.)

1. Construct that is (a bit) stronger than

2. Model check using

• If satisfies , we move to equivalence test

3. Check if , where

• If , we use to refine

• Otherwise, we have . 
→ we deem too strong and generate a weaker

ψ φ

ℳ′￼ ψ

ℳ′￼ ψ

ℳ(σ) = ℳ′￼(σ) ℳ′￼(σ) ∉ ψ

ℳ(σ) ≠ ℳ′￼(σ) σ ℳ′￼

ℳ(σ) ∉ ψ
ψ ψ

31

[Shijubo et al., RV’21]

BBC + Model checking with Strengthened Spec.

M. Waga (Kyoto U.)32

Syntactic Strengthening for LTL

10 Junya Shijubo, Masaki Waga, and Kohei Suenaga

the workflow in Fig. 2 may be more e�cient than the original workflow of BBC1

in Fig. 1, which we experimentally confirm in Section 4.2

3.1 Strengthening relation of LTL formulas3

To formalize our strengthening of LTL formulas, we define the strengthening4

relation ⇢ ✓ LTL ⇥ LTL over LTL formulas. Given an LTL formula ', we5

strengthen it to another LTL formula satisfying '⇢ . The syntactic defini-6

tion of ⇢ is suitable for the generation of the strengthened LTL formulas.7

Definition 8 (Strengthening relation of LTL formulas). For LTL for-8

mulas ', , ⇢ ✓ LTL⇥ LTL is the minimum relation satisfying the following.9

1. For any µ, ⌫ 2 LTL, we have (µ _ ⌫) ⇢ (µ ^ ⌫).10

2. For any µ 2 LTL, we have ⌃µ ⇢ ⇤⌃µ.11

3. For any µ 2 LTL, we have ⇤⌃µ ⇢ ⌃⇤µ.12

4. For any µ 2 LTL, we have ⌃⇤µ ⇢ ⇤µ.13

5. For any µ 2 LTL and for any indices i, j 2 N [{1} satisfying i < j, we14

have ⌃[i,j)µ ⇢ ⇤[i,j)µ.15

6. For any µ, ⌫ 2 LTL, we have (µ U ⌫) ⇢ (⇤µ ^⇤⌃⌫).16

7. For any µ 2 LTL and for any indices i, j, i0, j0 2 N [{1} satisfying [i, j))17

[i0, j0), we have ⌃[i,j)µ ⇢ ⌃[i0,j0)µ.18

8. For any µ, ⌫ 2 LTL, if we have ⌫ ⇢ µ, we have ¬µ ⇢ ¬⌫.19

9. For any µ, µ0, ⌫ 2 LTL satisfying µ ⇢ µ0, we have (µ _ ⌫) ⇢ (µ0
_ ⌫).20

10. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0, we have (µ _ ⌫) ⇢ (µ _ ⌫0).21

11. For any µ, ⌫ 2 LTL satisfying µ ⇢ ⌫, we have Xµ ⇢ X⌫.22

12. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0 and for any indices i, j 2 N[{1}23

satisfying i < j, we have (µ U[i,j) ⌫) ⇢ (µ U[i,j) ⌫
0).24

13. For any ', µ, 2 LTL satisfying '⇢ µ and µ ⇢ , we have '⇢ .25

We note that for the other operators than the ones in Definition 1, ⇢ is26

defined using their definition as the syntactic abbreviation.27

Example 1. For any p 2 AP, we have⇤[0,2)p ⇢ ⇤[0,10)p. This is because, by con-28

dition 7 of Definition 8, we have ⌃[0,10)¬p ⇢ ⌃[0,2)¬p. By applying condition 829

of Definition 8, we obtain ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p. By definition of the syntactic30

abbreviation, ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p is equivalent to ⇤[0,2)p ⇢ ⇤[0,10)p.31

We have the following correctness by induction. The proof is in Appendix A.32

Theorem 1 (Correctness of the strengthening relation). For any LTL
formulas ' and satisfying ' ⇢ , is stronger than ', i. e., for any ⇡ 2

(P(AP))! and k 2 N, (⇡, k) |= ' implies (⇡, k) |= . ut

Example 2. Let 'example = p1 _ ⌃[0,10)p2, with p1, p2 2 AP. By condition 1 of33

Definition 8, we have (p1_⌃[0,10)p2) ⇢ (p1^⌃[0,10)p2). Therefore, p1^⌃[0,2)p2 is34

one of the candidates in the strengthening of 'example. By conditions 7 and 10 of35

Definition 8, we have ⌃[0,10)p2 ⇢ ⌃[0,5)p2, and (p1 _⌃[0,10)p2) ⇢ (p1 _⌃[0,5)p2).36

⋮

Syntactic rules to derive stronger LTL formulas

M. Waga (Kyoto U.)32

Syntactic Strengthening for LTL

10 Junya Shijubo, Masaki Waga, and Kohei Suenaga

the workflow in Fig. 2 may be more e�cient than the original workflow of BBC1

in Fig. 1, which we experimentally confirm in Section 4.2

3.1 Strengthening relation of LTL formulas3

To formalize our strengthening of LTL formulas, we define the strengthening4

relation ⇢ ✓ LTL ⇥ LTL over LTL formulas. Given an LTL formula ', we5

strengthen it to another LTL formula satisfying '⇢ . The syntactic defini-6

tion of ⇢ is suitable for the generation of the strengthened LTL formulas.7

Definition 8 (Strengthening relation of LTL formulas). For LTL for-8

mulas ', , ⇢ ✓ LTL⇥ LTL is the minimum relation satisfying the following.9

1. For any µ, ⌫ 2 LTL, we have (µ _ ⌫) ⇢ (µ ^ ⌫).10

2. For any µ 2 LTL, we have ⌃µ ⇢ ⇤⌃µ.11

3. For any µ 2 LTL, we have ⇤⌃µ ⇢ ⌃⇤µ.12

4. For any µ 2 LTL, we have ⌃⇤µ ⇢ ⇤µ.13

5. For any µ 2 LTL and for any indices i, j 2 N [{1} satisfying i < j, we14

have ⌃[i,j)µ ⇢ ⇤[i,j)µ.15

6. For any µ, ⌫ 2 LTL, we have (µ U ⌫) ⇢ (⇤µ ^⇤⌃⌫).16

7. For any µ 2 LTL and for any indices i, j, i0, j0 2 N [{1} satisfying [i, j))17

[i0, j0), we have ⌃[i,j)µ ⇢ ⌃[i0,j0)µ.18

8. For any µ, ⌫ 2 LTL, if we have ⌫ ⇢ µ, we have ¬µ ⇢ ¬⌫.19

9. For any µ, µ0, ⌫ 2 LTL satisfying µ ⇢ µ0, we have (µ _ ⌫) ⇢ (µ0
_ ⌫).20

10. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0, we have (µ _ ⌫) ⇢ (µ _ ⌫0).21

11. For any µ, ⌫ 2 LTL satisfying µ ⇢ ⌫, we have Xµ ⇢ X⌫.22

12. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0 and for any indices i, j 2 N[{1}23

satisfying i < j, we have (µ U[i,j) ⌫) ⇢ (µ U[i,j) ⌫
0).24

13. For any ', µ, 2 LTL satisfying '⇢ µ and µ ⇢ , we have '⇢ .25

We note that for the other operators than the ones in Definition 1, ⇢ is26

defined using their definition as the syntactic abbreviation.27

Example 1. For any p 2 AP, we have⇤[0,2)p ⇢ ⇤[0,10)p. This is because, by con-28

dition 7 of Definition 8, we have ⌃[0,10)¬p ⇢ ⌃[0,2)¬p. By applying condition 829

of Definition 8, we obtain ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p. By definition of the syntactic30

abbreviation, ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p is equivalent to ⇤[0,2)p ⇢ ⇤[0,10)p.31

We have the following correctness by induction. The proof is in Appendix A.32

Theorem 1 (Correctness of the strengthening relation). For any LTL
formulas ' and satisfying ' ⇢ , is stronger than ', i. e., for any ⇡ 2

(P(AP))! and k 2 N, (⇡, k) |= ' implies (⇡, k) |= . ut

Example 2. Let 'example = p1 _ ⌃[0,10)p2, with p1, p2 2 AP. By condition 1 of33

Definition 8, we have (p1_⌃[0,10)p2) ⇢ (p1^⌃[0,10)p2). Therefore, p1^⌃[0,2)p2 is34

one of the candidates in the strengthening of 'example. By conditions 7 and 10 of35

Definition 8, we have ⌃[0,10)p2 ⇢ ⌃[0,5)p2, and (p1 _⌃[0,10)p2) ⇢ (p1 _⌃[0,5)p2).36

⋮

Syntactic rules to derive stronger LTL formulas

 is stronger than □ ◊μ ◊μ

M. Waga (Kyoto U.)32

Syntactic Strengthening for LTL

10 Junya Shijubo, Masaki Waga, and Kohei Suenaga

the workflow in Fig. 2 may be more e�cient than the original workflow of BBC1

in Fig. 1, which we experimentally confirm in Section 4.2

3.1 Strengthening relation of LTL formulas3

To formalize our strengthening of LTL formulas, we define the strengthening4

relation ⇢ ✓ LTL ⇥ LTL over LTL formulas. Given an LTL formula ', we5

strengthen it to another LTL formula satisfying '⇢ . The syntactic defini-6

tion of ⇢ is suitable for the generation of the strengthened LTL formulas.7

Definition 8 (Strengthening relation of LTL formulas). For LTL for-8

mulas ', , ⇢ ✓ LTL⇥ LTL is the minimum relation satisfying the following.9

1. For any µ, ⌫ 2 LTL, we have (µ _ ⌫) ⇢ (µ ^ ⌫).10

2. For any µ 2 LTL, we have ⌃µ ⇢ ⇤⌃µ.11

3. For any µ 2 LTL, we have ⇤⌃µ ⇢ ⌃⇤µ.12

4. For any µ 2 LTL, we have ⌃⇤µ ⇢ ⇤µ.13

5. For any µ 2 LTL and for any indices i, j 2 N [{1} satisfying i < j, we14

have ⌃[i,j)µ ⇢ ⇤[i,j)µ.15

6. For any µ, ⌫ 2 LTL, we have (µ U ⌫) ⇢ (⇤µ ^⇤⌃⌫).16

7. For any µ 2 LTL and for any indices i, j, i0, j0 2 N [{1} satisfying [i, j))17

[i0, j0), we have ⌃[i,j)µ ⇢ ⌃[i0,j0)µ.18

8. For any µ, ⌫ 2 LTL, if we have ⌫ ⇢ µ, we have ¬µ ⇢ ¬⌫.19

9. For any µ, µ0, ⌫ 2 LTL satisfying µ ⇢ µ0, we have (µ _ ⌫) ⇢ (µ0
_ ⌫).20

10. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0, we have (µ _ ⌫) ⇢ (µ _ ⌫0).21

11. For any µ, ⌫ 2 LTL satisfying µ ⇢ ⌫, we have Xµ ⇢ X⌫.22

12. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0 and for any indices i, j 2 N[{1}23

satisfying i < j, we have (µ U[i,j) ⌫) ⇢ (µ U[i,j) ⌫
0).24

13. For any ', µ, 2 LTL satisfying '⇢ µ and µ ⇢ , we have '⇢ .25

We note that for the other operators than the ones in Definition 1, ⇢ is26

defined using their definition as the syntactic abbreviation.27

Example 1. For any p 2 AP, we have⇤[0,2)p ⇢ ⇤[0,10)p. This is because, by con-28

dition 7 of Definition 8, we have ⌃[0,10)¬p ⇢ ⌃[0,2)¬p. By applying condition 829

of Definition 8, we obtain ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p. By definition of the syntactic30

abbreviation, ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p is equivalent to ⇤[0,2)p ⇢ ⇤[0,10)p.31

We have the following correctness by induction. The proof is in Appendix A.32

Theorem 1 (Correctness of the strengthening relation). For any LTL
formulas ' and satisfying ' ⇢ , is stronger than ', i. e., for any ⇡ 2

(P(AP))! and k 2 N, (⇡, k) |= ' implies (⇡, k) |= . ut

Example 2. Let 'example = p1 _ ⌃[0,10)p2, with p1, p2 2 AP. By condition 1 of33

Definition 8, we have (p1_⌃[0,10)p2) ⇢ (p1^⌃[0,10)p2). Therefore, p1^⌃[0,2)p2 is34

one of the candidates in the strengthening of 'example. By conditions 7 and 10 of35

Definition 8, we have ⌃[0,10)p2 ⇢ ⌃[0,5)p2, and (p1 _⌃[0,10)p2) ⇢ (p1 _⌃[0,5)p2).36

⋮

Syntactic rules to derive stronger LTL formulas

 is stronger than □ ◊μ ◊μ

Strengthening by changing
timing intervals

M. Waga (Kyoto U.)

Outline
• Preliminaries

• Active automata learning

• Black-box checking

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking
33

M. Waga (Kyoto U.)34

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

M. Waga (Kyoto U.)34

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test w/ input ℳ σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

Observation: an abstraction of is enough
if the result of model checking is same

ℳ

M. Waga (Kyoto U.)35

Output Abstraction wrt Spec.
Spec :

(Eventually p holds or
eventually q holds)

φ ◊p ∨ ◊q

a/{ }

b/{ }

a/{p}, 
b/{p,q}

a/{q}, 
b/{q}

[Matsumoto et al., EMSOFT’25]

M. Waga (Kyoto U.)35

Output Abstraction wrt Spec.

≈φ

Equivalent for the satisfaction of
(p vs q is irrelevant for)

φ
φ

Spec :
(Eventually p holds or

eventually q holds)

φ ◊p ∨ ◊q

a/{ }

b/{ }

a/{p}, 
b/{p,q}

a/{q}, 
b/{q}

a/{ }

b/{ }

a/{p}, 
b/{p}

a/{p}, 
b/{p}

[Matsumoto et al., EMSOFT’25]

M. Waga (Kyoto U.)35

Output Abstraction wrt Spec.

≈φ

Equivalent for the satisfaction of
(p vs q is irrelevant for)

φ
φ

a/{}, b/{} a/{p}, 
b/{p}

Spec :
(Eventually p holds or

eventually q holds)

φ ◊p ∨ ◊q

a/{ }

b/{ }

a/{p}, 
b/{p,q}

a/{q}, 
b/{q}

a/{ }

b/{ }

a/{p}, 
b/{p}

a/{p}, 
b/{p}

Minimization

[Matsumoto et al., EMSOFT’25]

M. Waga (Kyoto U.)

Specification-guided Abstraction

• For , only if for any , we
have for any subfml of

• is defined by mapping the outputs of
with , where

Theorem

We have for any safety or
co-safety property

v, v′￼ ∈ 2AP v ≈φ v′￼ σ ∈ (2AP)ω

v ⋅ σ ⊧ ψ ⟺ v′￼⋅ σ ⊧ ψ ψ φ

ℳ/ ≈φ ℳ
α : 2AP → Γ Γ = 2AP/ ≈φ

ℳ ⊧ φ ⟺ ℳ/ ≈φ ⊧ φ

36

One can control the granularity of abstraction

Violation (or satisfaction) is
witnessed by a finite trace

M. Waga (Kyoto U.)37

Learning of Abstracted System ℳ/ ≈φ
Abstracted system can be leaned by changing outputs!

Learning ℳ

Returning for ℳ(σ) ∈ (2AP)* σ ∈ Σ*

Learning ℳ/ ≈φ

Return

 for
ℳ/ ≈φ (σ) = α*(ℳ(σ)) ∈ Γ*

σ ∈ Σ*

Output
Abstraction
α : 2AP → Γ Return

for
ℳ(σ) ∈ (2AP)*

σ ∈ Σ*

M. Waga (Kyoto U.)

Abstract based on
by abstracting prop

ℳ φ

38

BBC w/ Specification-guided Abstraction

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ/ ≈φ ≠ ℳ′￼

Test

w/ input

ℳ/ ≈φ
σ

✘ w/ input σ✔

✘ (is violated)φLikely ✔ (seems satisfied)φ
Not Found ✘

✔  
→ ℳ/ ≈φ (σ) ≠ ℳ′￼(σ)

Found s.t. σ
ℳ/ ≈φ (σ) ≠ ℳ′￼(σ)

ℳ/ ≈φ

New

M. Waga (Kyoto U.)

Outline
• Preliminaries

• Active automata learning

• Black-box checking

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking
39

M. Waga (Kyoto U.)

FalCAuN: A Toolkit for Black-Box Checking

Java library for Black-box checking 
→ Can be used from JVM languages

Systems: MATLAB/Simulink, Python, Java

Spec: (discrete-time) STL/LTL

Implementing all three methods to enhance
the performance of BBC

40

They are orthogonal
→ We can use all of them!

M. Waga (Kyoto U.)

Case Study: Insulin Pump
• System: Type-1 Diabetes Simulator + RL-based

Controller of Insulin Pump

• Simulator: simglucose implemented in Python

• Requirements:

•

•

•

• Executed on a workstation w/ 
CPU: Intel i9-10980XE,  
RAM: 128484MiB, 
OS: Ubuntu 22.04

□ bg > 55

(meal ∧ Xmeal)R(bg > 180 ⇒ ◊[0,1]bg < 180)

(meal ∧ Xmeal)R(insulin > 0.5 ⇒ ◊[0,1]bg < 180)

41

Blood glucose level
should not be too low

Blood glucose level should
not be too high for a while

unless eating a lot

Blood glucose level should not be
too high for a while after feeding

insulin unless eating a lot

M. Waga (Kyoto U.)

Result of the Case Study
Execution Time: 116.8727 sec

Counter example of (meal ∧ Xmeal)R(insulin > 0.5 ⇒ ◊[0,1]bg < 180)

42

Blood glucose level goes high
by "zig-zag eating”

M. Waga (Kyoto U.)43

Approximate Mealy Machine ℳ′￼

a: no meal 
b: meal

M. Waga (Kyoto U.)43

Approximate Mealy Machine ℳ′￼

a: no meal 
b: meal

not eating meal does not
change the state

M. Waga (Kyoto U.)

Outline
• Preliminaries

• Active automata learning

• Black-box checking

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test

• Java Toolkit FalCAuN for black-box checking

• Probabilistic extension of black-box checking
44

M. Waga (Kyoto U.)45

Black-box Checking

✔
✘

Automata Learning Formal Verification
with Model Checking

Idea: Automata learning → formal verification!

[Peled et al., PSTV & FORTE’99]

?

M. Waga (Kyoto U.)45

Black-box Checking

✔
✘

Automata Learning Formal Verification
with Model Checking

Idea: Automata learning → formal verification!

[Peled et al., PSTV & FORTE’99]

?
System must be
deterministic!!

M. Waga (Kyoto U.)46

Probabilistic Black-box Checking

Max./Min. 
Satisfaction 

Prob.

MDP Learning
e.g. L*MDP 

[Tappler et al., FAOC’21]

Probabilistic
Model Checking

Idea: MDP learning → formal verification!

[Shijubo et al., EMSOFT’23]

b,1

a,1

a,1
b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5

?

b,1

M. Waga (Kyoto U.)46

Probabilistic Black-box Checking

Max./Min. 
Satisfaction 

Prob.

MDP Learning
e.g. L*MDP 

[Tappler et al., FAOC’21]

Probabilistic
Model Checking

Idea: MDP learning → formal verification!

[Shijubo et al., EMSOFT’23]

b,1

a,1

a,1
b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5MDP: actions
+ trans. prob.

?

b,1

M. Waga (Kyoto U.)46

Probabilistic Black-box Checking

Max./Min. 
Satisfaction 

Prob.

MDP Learning
e.g. L*MDP 

[Tappler et al., FAOC’21]

Probabilistic
Model Checking

Idea: MDP learning → formal verification!

[Shijubo et al., EMSOFT’23]

b,1

a,1

a,1
b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5MDP: actions
+ trans. prob.

Estimate
“safe” probability

?

b,1

M. Waga (Kyoto U.)47

What is MDP?
Model of stochastic system accepting inputs

b,1

a,1

a,1

b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5

b,1

Input sym. and
prob. of transition

M. Waga (Kyoto U.)48

Strategy
Prob. distr. over input symbols at each state

b,1

a,1

a,1

b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5

b,1

M. Waga (Kyoto U.)48

Strategy
Prob. distr. over input symbols at each state

b,1

a,1

a,1

b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5

b,1

a -> 0
b -> 1

a -> 0.5
b -> 0.5

a -> 0
b -> 1

a -> 1
b -> 0

a -> 0.5
b -> 0.5

M. Waga (Kyoto U.)49

Strategy
Prob. distr. over input symbols at each state

1

0

0.5

0.5

01

1

1 0

0

a -> 0
b -> 1

a -> 0.5
b -> 0.5

a -> 0
b -> 1

a -> 1
b -> 0

a -> 0.5
b -> 0.5

Fixing a strategy
turns MDP to
Markov chain

M. Waga (Kyoto U.)49

Strategy
Prob. distr. over input symbols at each state

1

0

0.5

0.5

01

1

1 0

0

a -> 0
b -> 1

a -> 0.5
b -> 0.5

a -> 0
b -> 1

a -> 1
b -> 0

a -> 0.5
b -> 0.5

Fixing a strategy
turns MDP to
Markov chain

Reachable in
prob. 0.5

M. Waga (Kyoto U.)50

Probabilistic Black-box Checking

Active MDP  
Learning, e.g. L*MDP

：

：:ℳ : Spec.φ

Compute max. sat. 
prob. of in φ ℳ′￼

:ℳ′￼

Estimate sat. prob. 
of in w/ φ ℳ σ

p w/ strategy σ
Not far from p

Far from p 
→ ℳ(σ) ≠ ℳ′￼(σ)

Likely p

Find evidence of 
ℳ ≠ ℳ′￼

Not Found

Found s.t. σ′￼

ℳ(σ′￼) ≠ ℳ′￼(σ′￼)

stat. hypo.
testing

True prob. by
 prob. model

checking

Not one input

[Shijubo et al., EMSOFT’23]

M. Waga (Kyoto U.)

Correctness in the Limit

51

Theorem (convergence):

If black-box system satisfies several conditions, with
probability 1,

• learned MDP converges to with finite iterations

• the estimated probability p converges to the true value

ℳ

ℳ′￼ ℳ

e.g. finite states

Eventually returns the true max. prob. + exact MDP with prob. 1

M. Waga (Kyoto U.)

Setting of Experiments
• Implemented in Python

• Show the results for 7 benchmarks mostly from literature

• The other results are in the paper

• Baseline: ProbBlackReach [Aichernig & Tappler, FMSD’19]

• Similar but using passive learning algorithm with -
greedy sampling

• Java implementation

• Google Cloud Platform c2-standard-4 instance (4 vCPU, 16GB RAM) with Debian 11

ε

52

M. Waga (Kyoto U.)

Summary of the Results

53

Ground Truth Our Method ProbBlackReach

Slot machine 0.510 0.507 0.480

Slot machine with
limited observation

0.510 0.509 0.448

MQTT 0.815 0.808 0.815

TCP 0.771 0.768 0.771

GridWorld Small 0.618 0.617 0.569

GridWorld Large 0.671 0.672 0.0683

SharedCoin 0.250 0.251 0.218

Estimate max. prob.
→ Larger is better

M. Waga (Kyoto U.)

Summary of the Results

53

Ground Truth Our Method ProbBlackReach

Slot machine 0.510 0.507 0.480

Slot machine with
limited observation

0.510 0.509 0.448

MQTT 0.815 0.808 0.815

TCP 0.771 0.768 0.771

GridWorld Small 0.618 0.617 0.569

GridWorld Large 0.671 0.672 0.0683

SharedCoin 0.250 0.251 0.218

Always close
to ground truth

Estimate max. prob.
→ Larger is better

M. Waga (Kyoto U.)

Summary of the Results

53

Ground Truth Our Method ProbBlackReach

Slot machine 0.510 0.507 0.480

Slot machine with
limited observation

0.510 0.509 0.448

MQTT 0.815 0.808 0.815

TCP 0.771 0.768 0.771

GridWorld Small 0.618 0.617 0.569

GridWorld Large 0.671 0.672 0.0683

SharedCoin 0.250 0.251 0.218

Always close
to ground truth

Estimate max. prob.
→ Larger is better

Not much close
to ground truth

M. Waga (Kyoto U.)

Summary of the Results

53

Ground Truth Our Method ProbBlackReach

Slot machine 0.510 0.507 0.480

Slot machine with
limited observation

0.510 0.509 0.448

MQTT 0.815 0.808 0.815

TCP 0.771 0.768 0.771

GridWorld Small 0.618 0.617 0.569

GridWorld Large 0.671 0.672 0.0683

SharedCoin 0.250 0.251 0.218

Always close
to ground truth

Estimate max. prob.
→ Larger is better

Not much close
to ground truth

Far from
ground truth

M. Waga (Kyoto U.)

Summary of the Results

54

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

0 10 20 30 40 50 60 70B
e
s
t
e
s
t
im

a
t
e
d
p
r
o
b
a
b
il
it
y

Number of steps on the SUT [⇥100, 000]

ProbBlackReach

Ours Ours
 ProbBlackReach

M. Waga (Kyoto U.)

Summary of the Results

54

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

0 10 20 30 40 50 60 70B
e
s
t
e
s
t
im

a
t
e
d
p
r
o
b
a
b
il
it
y

Number of steps on the SUT [⇥100, 000]

ProbBlackReach

Ours Ours
 ProbBlackReachProbBlackReach may

increase faster

M. Waga (Kyoto U.)

Summary of the Results

54

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55

0 10 20 30 40 50 60 70B
e
s
t
e
s
t
im

a
t
e
d
p
r
o
b
a
b
il
it
y

Number of steps on the SUT [⇥100, 000]

ProbBlackReach

Ours Ours
 ProbBlackReachProbBlackReach may

increase faster Ours 
saturates better

M. Waga (Kyoto U.)

Conclusions
• One can systematically test black-box systems with

black-box checking

• Idea: Automata learning + model checking

• We proposed several techniques to enhance the
efficiency of black-box checking

• A probabilistic extension is also available

55

✔
✘

Automata Learning Formal Verification
with Model Checking

?

M. Waga (Kyoto U.)

Some Future Directions
• Extension of black-box checking for, e.g.

• continuous-time systems

• Timed automata

• Hybrid automata

• Infinite alphabet

• Symbolic automata

• Nominal automata

• More expressive automata

• Visibly pushdown automata

• Use of white-box information of the system for gray-box systems

• More practical case study

56

M. Waga (Kyoto U.)

Appendix

57

M. Waga (Kyoto U.)

How About Direct Comparison?
• Direct comparison is also available e.g. [Abbas+, MEMOCODE’14]

• Potential Issue: more local maxima

58

Input

Output
ℳ(u)

ℳ′￼(u)

Cont. vs Cont.

Input

Output
ℳ(u)

ℳ′￼(u)

Cont. vs Disc.

M. Waga (Kyoto U.)59

Example on Jupyter w/ Kotlin
Use Kotlin to load the system, write

spec, visualize the results, …

M. Waga (Kyoto U.)60

Example on Jupyter w/ Kotlin

Input signal to make the
velocity of a car too large

Approximate Mealy
machine ℳ′￼

