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Safety Critical CPS

https://www.bbc.com/news/live/cvg4y6g74ert 
https://www.bbc.com/news/articles/cvg02rdxxz7o

https://www.bbc.com/news/live/cvg4y6g74ert
https://www.bbc.com/news/articles/cvg02rdxxz7o
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✔ 
✘ 
? 

Prob.

Param.

： 
：

Formal Modeling
Verification 

e.g. Model Checking

Black-boxQ. How to Trust
Safety Critical Systems?

： 
：

Approach 1: Guarantee safety or find bugs via model checking

Modeling is not 
difficult!
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Approach 2: Sample inputs, feed it to the system, reveal bugs
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Approach 2: Sample inputs, feed it to the system, reveal bugs

✔

✔

✔
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Limitation:  
Uniform sampling → hard to find rare unsafe behavior 
Biased sampling → Inefficient to test multiple requirements

Can be biased to pick 
less safe inputs 

(cf. robustness of 
signal temporal logic 

[Fainekos & Pappas, TCS’09])
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Black-Box Checking (BBC)

✔ 
✘

Automata Learning Formal Verification 
with Model Checking

Approach 3: Automata learning → formal verification

[Peled et al., FORTE’99]

： 
：

Good theoretical 
properties, e.g., 

convergence Reusable for 
multiple requirements
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Summary of This Talk

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test


• Java Toolkit FalCAuN for black-box checking


• Probabilistic extension of black-box checking

6



M. Waga (Kyoto U.)

Outline

7

• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test


• Java Toolkit FalCAuN for black-box checking


• Probabilistic extension of black-box checking



M. Waga (Kyoto U.)

Outline

7

• Preliminaries

• Active automata learning

• Black-box checking


•• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test


• Java Toolkit FalCAuN for black-box checking
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[Angluin, Inf. Comput.’87]
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Active Automata Learning
[Angluin, Inf. Comput.’87]

Answers: Yes, No, Evidence w ∈ L(𝒜hyp) △ Ltarget

Membership Equivalence

Questions:  ,  w ∈ Ltarget L(𝒜hyp) = Ltarget
??

Learner Oracle

is  modeled by
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Outline of Active Automata Learning
1. Initialize , 


2. Increase  and  to satisfy certain conditions, 
e.g., all the successors are constructed


3. Construct a hypothesis DFA  and ask eq. query 
→ if , the learning finishes


4. Refine P and S using   
→ go back to 2.

P ← {ε} S ← {ε}

P S

𝒜hyp
L(𝒜hyp) = Ltgt

w ∈ L(𝒜hyp) △ Ltgt

10
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Black-Box Checking (BBC)
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[Peled et al., FORTE’99]
Inputs 

• Black-box system under test 

• . 


•  preserves prefixes: . 


• (Safety) ω regular language 


Output (informal): One of the following


• “Likely ” + Mealy machine  approximating  s.t. 
. 


•  s.t.  witnesses the violation of 

ℳ : Σ∞ → (2AP)∞

∀σ ∈ Σ∞ |σ | = |ℳ(σ) |
ℳ ∀w ∈ Σω, i ℳ(w |[1,…,i] ) = ℳ(w) |[1,…,i]

φ ⊆ (2AP)ω

ℳ ⊧ φ ℳ′￼ ℳ
∀σ ∈ Σω ℳ′￼(σ) ∈ φ

σ ∈ Σ* ℳ(σ) ∈ (2AP)* φ

Deterministic

Finite or infinite sequence
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Black-Box Checking (BBC)

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify  against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test  w/ input ℳ σ

✘ w/ input σ✔

✘ (  is violated)φLikely ✔ (  seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found  s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

[Peled et al., FORTE’99]
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13
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1. Initialize , 


2. Increase  and  to satisfy certain conditions, 
e.g., all the successors are constructed


3. Construct a Mealy machine  and ask eq. query 
→ if , learning finishes


4. Refine P and S  using  s.t.   
→ go back to 2

P ← {ε} S ← {ε}

P S

ℳ′￼

∀w ∈ Σ* . ℳ(w) = ℳ′￼(w)

σ ∈ Σ* ℳ(σ) ≠ ℳ′￼(σ)

Construction of Mealy Machine   
in BBC

ℳ′￼

14

Used for approx. autom. 
construction
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Model Checking in BBC

Def (safety property). 
An ω-regular property  represents a safety property if for 
any  violating , there is a prefix  of  
such that for any ,  also violates .


Examples (in LTL): , , and 


Assumption: Model checkers return a finite witness of a violation

φ
w ∈ (2AP)ω φ u ∈ (2AP)* w

v ∈ (2AP)ω u ⋅ v φ

□ p □ (p → ◯q) pU(q ∨ G □ p)

16

We want a finite witness of violation 
→ focus on safety properties

Properties with finite witness of violation
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Test  with the Witness ℳ σ
• Model checker returns  s.t. . 




• We check if we also have . 


• Note: We can do this because  is safety and ω regular

• Yes → we finish the testing


• No →  is an evidence of  


• We use  to refine P and S  if we have 

σ ∈ Σ* ∀u ∈ (2AP)ω

ℳ′￼(σ) ⋅ u ∉ φ

∀u ∈ (2AP)ω ℳ(σ) ⋅ u ∉ φ

φ

σ ℳ ≠ ℳ′￼

σ ℳ(σ) ≠ ℳ′￼(σ)

18
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Equivalence Testing

Theoretically: Automata-based conformance test 
e.g., W-method [Chow, TSE’78], Wp-method [Fujiwara+, TSE’91]


• 😀 Equivalence can be guaranteed

• ☹ # of states is necessary for soundness


Practically: Random sampling of 

• 😀 PAC guarantee can be obtained [Angluin, Inf. Comput. 87]

• ☹ Not good at “rare” cex

σ

20

Goal: find  s.t.  to refine σ ∈ Σ* ℳ(σ) ≠ ℳ′￼(σ) S

 and  are likely 
equivalent for most of 

ℳ ℳ′￼

σ
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Difficult
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Outline
• Preliminaries


• Active automata learning

• Black-box checking


• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test


• Java Toolkit FalCAuN for black-box checking


• Probabilistic extension of black-box checking
22
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Equivalence Test Dedicated to BBC?

Eq. test for general automata learning: test overall equivalence


• Conformance test: Ensure the equivalence for all the 
transitions/states


• Random test: Ensure the equivalence for many input words


Observation: BBC’s goal is to show that  violates   
→ How about focusing on “less safe” parts in eq. test?

ℳ φ

23

assuming the size of ℳ

Refinement of  focusing on 
“less safe” parts of 

ℳ′￼

ℳ
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Robustness [Fainekos & Pappas, TCS’09]: “distance” from unsafe area


• Sample  with small robustness in equivalence test

• Black-box optimization can be used

• e.g. genetic algorithms

σ ∈ Σ*

24

[Waga, HSCC’20]

Idea: sample “less safe” inputs by minimizing robustness

Robustness-Guided Equivalence Test

t

v Unsafe area

margin from unsafe area 
(robustness)Generalized for 

Booleans, Until, …

Example: □ (v < 120)
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Robustness-Guided Equivalence Test

Gen. population U ⊊ Σ*

 ?∀σ ∈ U . ℳ(σ) = ℳ′￼(σ)

Gen. next population U'

Selection: σ ∈ U' s.t. 
 is small ρ(ℳ(σ), φ)

No

Yes

Return σ
U := U'

Crossover and mutation 
in genetic algorithms

robustness of 
 wrt φ ℳ(σ)
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Why  as Fitness?ρ(ℳ(σ), φ)
Assumption:  
 i.e. ∃σ. 


Fact:  i.e. 
 

 by model checking


Heuristic: Find σ s.t.  
 in  

 is small

ℳ /⊧ φ
ρ(ℳ(σ), φ) ≤ 0

ℳ′￼ ⊧ φ
∀σ . ρ(ℳ′￼(σ), φ) ≥ 0

ℳ(σ) ≠ ℳ′￼(σ)
ρ(ℳ(σ), φ)

26

x

x

x

x
x+ +

+ +

+
+

ρ(ℳ(σ), φ)

Input σ

xx

Robustness

+

0

ρ(ℳ′￼(σ), φ)x +
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x

x

x

x
x+ +

+ +

+
+

ρ(ℳ(σ), φ)

Input σ

xx

Robustness

+

0

 and  deviateℳ ℳ′￼

ρ(ℳ′￼(σ), φ)x +
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27



M. Waga (Kyoto U.)28

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify  against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test  w/ input ℳ σ

✘ w/ input σ✔

✘ (  is violated)φLikely ✔ (  seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found  s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]



M. Waga (Kyoto U.)28

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify  against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test  w/ input ℳ σ

✘ w/ input σ✔

✘ (  is violated)φLikely ✔ (  seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found  s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

Difficult



M. Waga (Kyoto U.)

Finding a Deviation via Model checking 
of Strengthened Spec.

Observation 1: model checking of  is typically more 
efficient than equivalent testing


• Particularly when running  is time consuming


Observation 2:  s.t.  and  
for a bit stronger  than  is often useful for BBC


• Stronger: 


• If  is much stronger than , we cannot bias the learning

ℳ′￼

ℳ

σ ∈ Σ* ℳ(σ) ≠ ℳ′￼(σ) ℳ′￼(σ) ⊈ ψ
ψ φ

ψ ⊊ φ

ψ φ
29

Idea: find “near unsafe” inputs via model checking

Running  for many timesℳ
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Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify  against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test  w/ input ℳ σ

✘ w/ input σ✔

✘ (  is violated)φLikely ✔ (  seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found  s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

BBC + Model checking with Strengthened Spec.
[Shijubo et al., RV’21]

Verify  against ℳ′￼ ψ✔

Test if 
 ℳ(σ) = ℳ′￼(σ)

✘ w/ input σ

✘

✔
Difficult
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1. Construct  that is (a bit) stronger than 


2. Model check  using 


• If  satisfies , we move to equivalence test


3. Check if , where 


• If , we use  to refine 


• Otherwise, we have . 
→ we deem  too strong and generate a weaker 

ψ φ

ℳ′￼ ψ

ℳ′￼ ψ

ℳ(σ) = ℳ′￼(σ) ℳ′￼(σ) ∉ ψ

ℳ(σ) ≠ ℳ′￼(σ) σ ℳ′￼

ℳ(σ) ∉ ψ
ψ ψ

31

[Shijubo et al., RV’21]

BBC + Model checking with Strengthened Spec.
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Syntactic Strengthening for LTL 

10 Junya Shijubo, Masaki Waga, and Kohei Suenaga

the workflow in Fig. 2 may be more e�cient than the original workflow of BBC1

in Fig. 1, which we experimentally confirm in Section 4.2

3.1 Strengthening relation of LTL formulas3

To formalize our strengthening of LTL formulas, we define the strengthening4

relation ⇢ ✓ LTL ⇥ LTL over LTL formulas. Given an LTL formula ', we5

strengthen it to another LTL formula  satisfying '⇢  . The syntactic defini-6

tion of ⇢ is suitable for the generation of the strengthened LTL formulas.7

Definition 8 (Strengthening relation of LTL formulas). For LTL for-8

mulas ', , ⇢ ✓ LTL⇥ LTL is the minimum relation satisfying the following.9

1. For any µ, ⌫ 2 LTL, we have (µ _ ⌫) ⇢ (µ ^ ⌫).10

2. For any µ 2 LTL, we have ⌃µ ⇢ ⇤⌃µ.11

3. For any µ 2 LTL, we have ⇤⌃µ ⇢ ⌃⇤µ.12

4. For any µ 2 LTL, we have ⌃⇤µ ⇢ ⇤µ.13

5. For any µ 2 LTL and for any indices i, j 2 N [ {1} satisfying i < j, we14

have ⌃[i,j)µ ⇢ ⇤[i,j)µ.15

6. For any µ, ⌫ 2 LTL, we have (µ U ⌫) ⇢ (⇤µ ^⇤⌃⌫).16

7. For any µ 2 LTL and for any indices i, j, i0, j0 2 N [ {1} satisfying [i, j) )17

[i0, j0), we have ⌃[i,j)µ ⇢ ⌃[i0,j0)µ.18

8. For any µ, ⌫ 2 LTL, if we have ⌫ ⇢ µ, we have ¬µ ⇢ ¬⌫.19

9. For any µ, µ0, ⌫ 2 LTL satisfying µ ⇢ µ0, we have (µ _ ⌫) ⇢ (µ0
_ ⌫).20

10. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0, we have (µ _ ⌫) ⇢ (µ _ ⌫0).21

11. For any µ, ⌫ 2 LTL satisfying µ ⇢ ⌫, we have Xµ ⇢ X⌫.22

12. For any µ, ⌫, ⌫0 2 LTL satisfying ⌫ ⇢ ⌫0 and for any indices i, j 2 N[ {1}23

satisfying i < j, we have (µ U[i,j) ⌫) ⇢ (µ U[i,j) ⌫
0).24

13. For any ', µ, 2 LTL satisfying '⇢ µ and µ ⇢  , we have '⇢  .25

We note that for the other operators than the ones in Definition 1, ⇢ is26

defined using their definition as the syntactic abbreviation.27

Example 1. For any p 2 AP, we have⇤[0,2)p ⇢ ⇤[0,10)p. This is because, by con-28

dition 7 of Definition 8, we have ⌃[0,10)¬p ⇢ ⌃[0,2)¬p. By applying condition 829

of Definition 8, we obtain ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p. By definition of the syntactic30

abbreviation, ¬⌃[0,2)¬p ⇢ ¬⌃[0,10)¬p is equivalent to ⇤[0,2)p ⇢ ⇤[0,10)p.31

We have the following correctness by induction. The proof is in Appendix A.32

Theorem 1 (Correctness of the strengthening relation). For any LTL
formulas ' and  satisfying ' ⇢  ,  is stronger than ', i. e., for any ⇡ 2

(P(AP))! and k 2 N, (⇡, k) |= ' implies (⇡, k) |=  . ut

Example 2. Let 'example = p1 _ ⌃[0,10)p2, with p1, p2 2 AP. By condition 1 of33

Definition 8, we have (p1_⌃[0,10)p2) ⇢ (p1^⌃[0,10)p2). Therefore, p1^⌃[0,2)p2 is34

one of the candidates in the strengthening of 'example. By conditions 7 and 10 of35

Definition 8, we have ⌃[0,10)p2 ⇢ ⌃[0,5)p2, and (p1 _⌃[0,10)p2) ⇢ (p1 _⌃[0,5)p2).36

⋮

Syntactic rules to derive stronger LTL formulas
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Syntactic rules to derive stronger LTL formulas

 is stronger than □ ◊μ ◊μ

Strengthening by changing 
timing intervals
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Outline
• Preliminaries


• Active automata learning

• Black-box checking


• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test


• Java Toolkit FalCAuN for black-box checking


• Probabilistic extension of black-box checking
33
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Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify  against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ ≠ ℳ′￼

Test  w/ input ℳ σ

✘ w/ input σ✔

✘ (  is violated)φLikely ✔ (  seems satisfied)φ
Not Found ✘

✔  
→ ℳ(σ) ≠ ℳ′￼(σ)

Found  s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]
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Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify  against ℳ′￼ φ

:ℳ′￼

Find evidence of 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Test  w/ input ℳ σ

✘ w/ input σ✔

✘ (  is violated)φLikely ✔ (  seems satisfied)φ
Not Found ✘
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→ ℳ(σ) ≠ ℳ′￼(σ)

Found  s.t. σ
ℳ(σ) ≠ ℳ′￼(σ)

Black-Box Checking (BBC)
[Peled et al., FORTE’99]

Observation: an abstraction of  is enough 
if the result of model checking is same

ℳ
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Output Abstraction wrt Spec.
Spec :  

(Eventually p holds or 
eventually q holds)

φ ◊p ∨ ◊q

a/{ }

b/{ }

a/{p}, 
b/{p,q}

a/{q}, 
b/{q}

[Matsumoto et al., EMSOFT’25]
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Output Abstraction wrt Spec.

≈φ

Equivalent for the satisfaction of   
(p vs q is irrelevant for )

φ
φ
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(Eventually p holds or 

eventually q holds)
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a/{ }

b/{ }
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b/{ }

a/{p}, 
b/{p}

a/{p}, 
b/{p}

[Matsumoto et al., EMSOFT’25]
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Output Abstraction wrt Spec.

≈φ

Equivalent for the satisfaction of   
(p vs q is irrelevant for )

φ
φ

a/{}, b/{} a/{p}, 
b/{p}

Spec :  
(Eventually p holds or 

eventually q holds)

φ ◊p ∨ ◊q

a/{ }

b/{ }

a/{p}, 
b/{p,q}

a/{q}, 
b/{q}

a/{ }

b/{ }

a/{p}, 
b/{p}

a/{p}, 
b/{p}

Minimization

[Matsumoto et al., EMSOFT’25]
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Specification-guided Abstraction

• For ,  only if for any , we 
have   for any subfml  of 


•  is defined by mapping the outputs of  
with , where 


Theorem 

We have  for any safety or 
co-safety property

v, v′￼ ∈ 2AP v ≈φ v′￼ σ ∈ (2AP)ω

v ⋅ σ ⊧ ψ ⟺ v′￼⋅ σ ⊧ ψ ψ φ

ℳ/ ≈φ ℳ
α : 2AP → Γ Γ = 2AP/ ≈φ

ℳ ⊧ φ ⟺ ℳ/ ≈φ ⊧ φ

36

One can control the granularity of abstraction

Violation (or satisfaction) is 
witnessed by a finite trace
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Learning of Abstracted System ℳ/ ≈φ
Abstracted system can be leaned by changing outputs!

Learning ℳ

Returning  for ℳ(σ) ∈ (2AP)* σ ∈ Σ*

Learning ℳ/ ≈φ

Return 

 for 
ℳ/ ≈φ (σ) = α*(ℳ(σ)) ∈ Γ*

σ ∈ Σ*

Output 
Abstraction 
α : 2AP → Γ Return  

for 
ℳ(σ) ∈ (2AP)*

σ ∈ Σ*



M. Waga (Kyoto U.)

Abstract  based on   
by abstracting prop

ℳ φ

38

BBC w/ Specification-guided Abstraction

Active Automata  
Learning, e.g. L*

:ℳ : Spec.φ

Verify  against ℳ′￼ φ

:ℳ′￼

Find evidence of 
ℳ/ ≈φ ≠ ℳ′￼

Test 

w/ input 

ℳ/ ≈φ
σ

✘ w/ input σ✔

✘ (  is violated)φLikely ✔ (  seems satisfied)φ
Not Found ✘

✔  
→ ℳ/ ≈φ (σ) ≠ ℳ′￼(σ)

Found  s.t. σ
ℳ/ ≈φ (σ) ≠ ℳ′￼(σ)

ℳ/ ≈φ

New
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Outline
• Preliminaries


• Active automata learning

• Black-box checking


• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test


• Java Toolkit FalCAuN for black-box checking


• Probabilistic extension of black-box checking
39



M. Waga (Kyoto U.)

FalCAuN: A Toolkit for Black-Box Checking

Java library for Black-box checking 
→ Can be used from JVM languages


Systems: MATLAB/Simulink, Python, Java


Spec: (discrete-time) STL/LTL


Implementing all three methods to enhance 
the performance of BBC

40

They are orthogonal 
→ We can use all of them!
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Case Study: Insulin Pump
• System: Type-1 Diabetes Simulator + RL-based 

Controller of Insulin Pump

• Simulator: simglucose implemented in Python


• Requirements:

• 


• 


• 


• Executed on  a workstation w/ 
CPU: Intel i9-10980XE,  
RAM: 128484MiB, 
OS: Ubuntu 22.04

□ bg > 55

(meal ∧ Xmeal)R(bg > 180 ⇒ ◊[0,1]bg < 180)

(meal ∧ Xmeal)R(insulin > 0.5 ⇒ ◊[0,1]bg < 180)

41

Blood glucose level 
should not be too low 

Blood glucose level should 
not be too high for a while 

unless eating a lot

Blood glucose level should not be 
too high for a while after feeding 

insulin unless eating a lot
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Result of the Case Study
Execution Time: 116.8727 sec 


Counter example of (meal ∧ Xmeal)R(insulin > 0.5 ⇒ ◊[0,1]bg < 180)

42

Blood glucose level goes high 
by "zig-zag eating”
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Approximate Mealy Machine ℳ′￼

a: no meal 
b: meal
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Approximate Mealy Machine ℳ′￼

a: no meal 
b: meal

not eating meal does not 
change the state
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Outline
• Preliminaries


• Active automata learning

• Black-box checking


• Techniques for efficient black-box checking

• Robustness-guided equivalence testing

• Model checking of strengthened formulas

• Specification-guided abstraction of system under test


• Java Toolkit FalCAuN for black-box checking


• Probabilistic extension of black-box checking
44
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Black-box Checking

✔ 
✘

Automata Learning Formal Verification 
with Model Checking

Idea: Automata learning → formal verification!

[Peled et al., PSTV & FORTE’99]

?
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Black-box Checking

✔ 
✘

Automata Learning Formal Verification 
with Model Checking

Idea: Automata learning → formal verification!

[Peled et al., PSTV & FORTE’99]

?
System must be 
deterministic!!
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Probabilistic Black-box Checking

Max./Min. 
Satisfaction 

Prob.

MDP Learning  
e.g. L*MDP 

[Tappler et al., FAOC’21]

Probabilistic  
Model Checking

Idea: MDP learning → formal verification!

[Shijubo et al., EMSOFT’23]

b,1

a,1

a,1
b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5

?

b,1
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Probabilistic Black-box Checking

Max./Min. 
Satisfaction 

Prob.

MDP Learning  
e.g. L*MDP 

[Tappler et al., FAOC’21]
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Probabilistic Black-box Checking

Max./Min. 
Satisfaction 

Prob.

MDP Learning  
e.g. L*MDP 

[Tappler et al., FAOC’21]

Probabilistic  
Model Checking

Idea: MDP learning → formal verification!

[Shijubo et al., EMSOFT’23]

b,1

a,1

a,1
b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5MDP: actions 
+ trans. prob.

Estimate 
“safe” probability

?

b,1
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What is MDP?
Model of stochastic system accepting inputs

b,1

a,1

a,1

b,1

b,1a,1

a,1

b,1 a,0.5

a,0.5

b,1

Input sym. and 
prob. of transition
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Strategy
Prob. distr. over input symbols at each state
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a,1
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b,1 a,0.5

a,0.5

b,1
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Strategy
Prob. distr. over input symbols at each state
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b -> 0.5

a -> 0 
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a -> 1 
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a -> 0.5 
b -> 0.5
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Strategy
Prob. distr. over input symbols at each state
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Fixing a strategy 
turns MDP to 
Markov chain
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Strategy
Prob. distr. over input symbols at each state

1

0

0.5

0.5

01

1

1 0

0

a -> 0 
b -> 1

a -> 0.5 
b -> 0.5

a -> 0 
b -> 1

a -> 1 
b -> 0

a -> 0.5 
b -> 0.5

Fixing a strategy 
turns MDP to 
Markov chain

Reachable in 
prob. 0.5
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Probabilistic Black-box Checking

Active MDP  
Learning, e.g. L*MDP

：
 
：:ℳ : Spec.φ

Compute max. sat. 
prob. of  in φ ℳ′￼

:ℳ′￼

Estimate sat. prob. 
of  in  w/ φ ℳ σ

p w/ strategy σ
Not far from p

Far from p 
→ ℳ(σ) ≠ ℳ′￼(σ)

Likely p

Find evidence of 
ℳ ≠ ℳ′￼

Not Found

Found  s.t. σ′￼

ℳ(σ′￼) ≠ ℳ′￼(σ′￼)

stat. hypo. 
testing

True prob. by 
 prob. model 

checking

Not one input

[Shijubo et al., EMSOFT’23]
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Correctness in the Limit

51

Theorem (convergence):


If black-box system  satisfies several conditions, with 
probability 1, 


• learned MDP  converges to  with finite iterations


• the estimated probability p converges to the true value

ℳ

ℳ′￼ ℳ

e.g. finite states

Eventually returns the true max. prob. + exact MDP with prob. 1
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Setting of Experiments
• Implemented in Python


• Show the results for 7 benchmarks mostly from literature

• The other results are in the paper


• Baseline: ProbBlackReach [Aichernig & Tappler, FMSD’19]


• Similar but using passive learning algorithm with -
greedy sampling


• Java implementation


• Google Cloud Platform c2-standard-4 instance (4 vCPU, 16GB RAM) with Debian 11

ε

52
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Summary of the Results

53

Ground Truth Our Method ProbBlackReach

Slot machine 0.510 0.507 0.480

Slot machine with 
limited observation

0.510 0.509 0.448

MQTT 0.815 0.808 0.815

TCP 0.771 0.768 0.771

GridWorld Small 0.618 0.617 0.569

GridWorld Large 0.671 0.672 0.0683

SharedCoin 0.250 0.251 0.218

Estimate max. prob. 
→ Larger is better
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Summary of the Results

53

Ground Truth Our Method ProbBlackReach

Slot machine 0.510 0.507 0.480

Slot machine with 
limited observation

0.510 0.509 0.448

MQTT 0.815 0.808 0.815

TCP 0.771 0.768 0.771

GridWorld Small 0.618 0.617 0.569

GridWorld Large 0.671 0.672 0.0683

SharedCoin 0.250 0.251 0.218

Always close 
to ground truth

Estimate max. prob. 
→ Larger is better

Not much close 
to ground truth
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Summary of the Results
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Summary of the Results
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Conclusions
• One can systematically test black-box systems with 

black-box checking

• Idea: Automata learning + model checking


• We proposed several techniques to enhance the 
efficiency of black-box checking


• A probabilistic extension is also available

55

✔ 
✘

Automata Learning Formal Verification 
with Model Checking

?
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Some Future Directions
• Extension of black-box checking for, e.g.


• continuous-time systems

• Timed automata

• Hybrid automata


• Infinite alphabet

• Symbolic automata

• Nominal automata


• More expressive automata

• Visibly pushdown automata


• Use of white-box information of the system for gray-box systems


• More practical case study

56
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Appendix

57
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How About Direct Comparison?
• Direct comparison is also available e.g. [Abbas+, MEMOCODE’14]


• Potential Issue: more local maxima

58

Input

Output
ℳ(u)

ℳ′￼(u)

Cont. vs Cont.

Input

Output
ℳ(u)

ℳ′￼(u)

Cont. vs Disc.
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Example on Jupyter w/ Kotlin
Use Kotlin to load the system, write 

spec, visualize the results, …
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Example on Jupyter w/ Kotlin

Input signal to make the 
velocity of a car too large

Approximate Mealy 
machine ℳ′￼


