. A
(o i o\
Oy e 1 21N
K. (1] JAPAN / A\
o

KYOTO UNIVERSITY

Specification-Based Testing
of Cyber-Physical Systems
via Black-Box Checking

Masaki Waga

Kyoto University
2025 December 15th, QuantFormal 2025

Joint work with Junya Shijubo, Tsubasa Matsumoto,
Kazuki Watanabe, and Kohei Suenaga

Safety Critical CPS

Home | Israel-Gaza war | War in Ukraine | Climate | Video | World | Asia | UK |

Business | Tech

Tesla investigated over self-driving cars
on wrong side of road

10 October 2025 Share «{ Save [

L L\

Imran Rahman-Jones

Technology reporter

Flight disruption warning as Airbus requests
modifications to 6,000 planes

®© 29 November 2025

! Bloomberg via Getty Images

https://www.bbc.com/news/live/cvg4y6qg74ert
https://www.bbc.com/news/articles/cvg02rdxxz7o

M. Waga (Kyoto U.)

https://www.bbc.com/news/live/cvg4y6g74ert
https://www.bbc.com/news/articles/cvg02rdxxz7o

Q. How to Trust
Safety Critical Systems?

Q. How to Trust
Safety Critical Systems?

Approach 1: Guarantee safety or find bugs via model checking

v

_ Verification X
Formal Modeling e.g. Model Checking

o ” P i i) o
Z ANl T g it et Lo
LT 5 o - g Z
i
4

Prob.
Param.

M. Waga (Kyoto U.)

Q. How to Trust Black-box
Safety Critical Systems?

Approach 1: Guarantee safety or find bugs via model checking

v

Verification X

& Formal Modeling e.g. Model Checking
(2[}) ¥ » Prob.
Modeling is not Param.
: difficult! :
3

M. Waga (Kyoto U.)

Approach 2: Sample inputs, feed it to the system, reveal bugs

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

1
-~
.
~_',‘.
Ll
'._v,\
.
"
)
ey
]
I
|
)
- \\
s’
—

&

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

| =
S <>
ofoJ1fo]1fo 1]1]1fo]ofo

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

o
ol
:
i | &
|
[|

EEIIIIE”

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

1
-~
L4
&_o,‘.
Ll
'._v'\
.
"
KL,
]
I
|
’
- \\
SI
—

t]r]o]r]1]o
of1]ojoji]o

%

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

%

1]ojoj1
of1]ojojojo

1]oj1]ojo]o.
oft]1]ol1]1¢

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

Can be biased to pick

less safe inputs 7.

(cf. robustness of g
signal temporal logic E
[Fainekos & Pappas, TCS’09]) %

il Kl CIERED (2.
1]ojoj1
of1]ojojojo '

%

1]oj1]ojo]o.
oft]1]ol1]1¢

M. Waga (Kyoto U.)

Sampling-based Testing

Approach 2: Sample inputs, feed it to the system, reveal bugs

Can be biased to pick
less safe inputs
(cf. robustness of
signal temporal logic
[Fainekos & Pappas, TCS’09])

Limitation:
Uniform sampling = hard to find rare unsafe behavior
Biased sampling — Inefficient to test multiple requirements

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

Approach 3: Automata learning — formal verification

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

Approach 3: Automata learning — formal verification

Automata Learning

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

Approach 3: Automata learning — formal verification

Automata Learning

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

Approach 3: Automata learning — formal verification

Formal Verification
ith Model Cheing

[P P h 1 Y m
a4 L oS SR R g rvopr e / .
7 7 v e - - oo P
yy ey o A e ek oavalat " P
u WA K | \
TELIS
ALY
‘g

Automata Learning

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

Approach 3: Automata learning — formal verification

Formal Verification

L
pll o LR
8 . 1 G
T BREXE T e et L gyt 1
. N , ,
5
4 { /
L
&

Automata Learning

v

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

Approach 3: Automata learning — formal verification

Formal Verification

L
pll o LR
8 . . gl G
SRR osic VI ity SUR
2 i \
5
4 { /
L
&

Automata Learning

v

Good theoretical
properties, e.g.,
convergence

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

Approach 3: Automata learning — formal verification

Formal Verification
Q\W

Reusable for
multiple requirements

Automata Learning

v

Good theoretical
properties, e.g.,
convergence

M. Waga (Kyoto U.)

Summary of This Talk

+Techniques for efficient black-box checking

+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

- Specification-guided abstraction of system under test
- Java Toolkit FalCAuN for black-box checking

+ Probabilistic extension of black-box checking

M. Waga (Kyoto U.)

Outline

+Techniques for efficient black-box checking
+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

- Specification-guided abstraction of system under test

- Java Toolkit FalCAuN for black-box checking

+ Probabilistic extension of black-box checking
M. Waga (Kyoto U.)

Outline

+ Preliminaries
- Active automata learning

- Black-box checking

- Techniques for efficient black-box checking
+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

- Specification-guided abstraction of system under test

- Java Toolkit FalCAuN for black-box checking

+ Probabilistic extension of black-box checking
M. Waga (Kyoto U.)

Active Automata Learning

[Angluin, Inf. Comput.’87]

Active Automata Learning

Learner

[Angluin, Inf. Comput.’87]

Active Automata Learning

[Angluin, Inf. Comput.’87]

Learner ‘ racle

Active Automata Learning

[Angluin, Inf. Comput.’87]

‘)

Questions: W € L, ..

Learner ‘ e

6)
L(‘Q[hyp) = Ltarget

Oracle
pac ‘*’Qmﬁ[/ Pals
y I
/.) ‘
y Yy

M. Waga (Kyoto U.)

Active Automata Learning

[Angluin, Inf. Comput.’87]

Membership
()

Questions: W € L, ..

Learner ‘ e

‘)
L(hyp) = Ltarget

Oracle
pac ‘*’Qﬂqﬁ[‘/ Pals
y I
/.) ‘
y Yy

M. Waga (Kyoto U.)

Active Automata Learning

i - Angluin, Inf. Comput.’87]
Membership Equivalence [Ang P
? ?

Questions: w € L L(H) = Liarget

target’
Learner ‘ o ==/ Oracle

M. Waga (Kyoto U.)

Active Automata Learning

: ' Angluin, Inf. Comput.’87
Membership Equivalence [Ang put.’87]
? ?

QueStIOHS: 1 %% E Ltarget’ L(ﬂhyp) — Ltarget

Learner ~/h Ofac'e
’l I é P
s

T 0 & ST o = g BT
S =

Answers: Yes, No, Evidence w € L(fy,,,)) A\ L,

arget

M. Waga (Kyoto U.)

Active Automata Learning

: ' Angluin, Inf. Comput.’87
Membership Equivalence [Ang put.’87]
? ?

Questions: W € Ly,.oc, LA }y,) =
Lea rner , e R = ,”f .

Oracle

P e e e, o e BT
e -

Yes, No, Evidence w € L(Qihyp) /\ L,

arget

M. Waga (Kyoto U.)

ldea: Find Good Prefixes/Suffixes

Target DFA @ -

Prefix tree |
%
Unrolling/Sampling b
é:é ‘V | aJ
a > aa

M. Waga (Kyoto U.)

ldea: Find Good Prefixes/Suffixes

Target DFA
Prefix tree . @

Unrolling/Sampling b [
A

Prefixes P to
cover states

M. Waga (Kyoto U.)

ldea: Find Good Prefixes/Suffixes

Target DFA
Prefix tree.~ @
—(»)
>{ abb
()
> aaab
. ’ b b N
Prefixes P to aa ~((aabb
cover states
() -

& q Suffixes S to
distinguish

i prefixes
M. Waga (Kyoto U.)

Unrolling/Sampling

Outline of Active Automata Learning

1. Initialize P < {e}, S « {¢)

2. Increase P and S to satisfy certain conditions,
e.g., all the successors are constructed

3. Construct a hypothesis DFA ‘Q[hyp and ask eq. query

= if L(y,y,) = Lyg, the learning finishes

gr

4. Refine Pand Susingw € L(},,) JAN Ly
— go back to 2.

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

.. [Peled et al., FORTE’99]
Inputs Deterministic

. Black-box system under test A : =X — (2AF)®
- Vo€ X%, |o| = | M (o)| BEllEKIRiliiEEE [T
. M preserves prefixes: Vw € X%, i. M(w \[1) = A w) |[1 -

]

. (Safety) w regular language @ C (24%)®

Output (informal): One of the following

o “Likely A/ F @” + Mealy machine .4’ approximating ./ s.t.
Vo e 2. M'(o) € ¢

. 0 € X*st. M(o) € (2°7)* witnesses the violation of ¢

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

@: Spec.
Found o s.t.

v
M (o) # M (o)

— M (o) # M (o)

| Active Automata |
Learning, e.g. L* |

~\

Verify ' against
! Find evidence of A ety 9d ? ! A

M+ M Jﬁ/—*kTest M w/ input aJ

Not Found X w/ input o l X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Active Learning of Mealy Machine .Z’

1. Initialize P < {e}, S « {¢)

2. Increase P and S to satisfy certain conditions,
e.g., all the successors are constructed

3. Construct a Mealy machine .4’ and ask eq. query
- if Vw e 2* . M (w) = M '(w), learning finishes

4. Refine P and Susing o € 2* s.t. M (o) # M (o)
— go back to 2

M. Waga (Kyoto U.)

Construction of Mealy Machine .#’
in BBC

. Used for approx. autom.
Initialize P < {e}, S <« {¢&} construction

Increase P and § to satisfy certain conditions,
e.g., all the successors are constructed

4. Refine Pand S using o € 2* s.t. M (o) #* M '(0)
— go back to 2

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

@: Spec.
Found o s.t.

v
M (o) # M (o)

— M (o) # M (o)

| Active Automata |
Learning, e.g. L* |

~\

Verify ' against
! Find evidence of A ety 9d ? ! A

M+ M Jﬁ/—*kTest M w/ input aJ

Not Found X w/ input o l X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Found o s.t.

M (o) # M (o)

M FE= M

[)
Find evidence of

l Not Found v

v

é)

Active Automata
Learning, e.g. L~

" ~ y

Likely ¢ (¢ seems satisfied)

’Verify M against @ ;

[Peled et al., FORTE’99]

@: Spec.

v
— M (o) # M (o)

Black-Box Checking (BBC)
M a

s

Test .4 w/ input o

X w/ input o

~

,

T

X (¢ is violated)

M. Waga (Kyoto U.)

Model Checking in BBC

We want a finite witness of violation

— focus on safety properties

Properties with finite witness of violation

Def (safety property).
An w-regular property @ represents a safety property if for
any w € (2%%)? violating @, there is a prefix u € (22°)* of w
such that for any v € (22F)®, u - v also violates .

Examples (in LTL): [p, [(J(p — ()g), and pU(g vV G [p)

Assumption: Model checkers return a finite witness of a violation

M. Waga (Kyoto U.)

Found o s.t.

M (o) # M (o)

M FE= M

[)
Find evidence of

l Not Found v

v

é)

Active Automata
Learning, e.g. L~

" ~ y

Likely ¢ (¢ seems satisfied)

Verify M’ against @}

[Peled et al., FORTE’99]

@: Spec.

v
— M (o) # M (o)

Black-Box Checking (BBC)
M a

s

Test .4 w/ input o

X w/ input o

~

,

T

X (¢ is violated)

M. Waga (Kyoto U.)

=

Found o s.t.

v

M (o) # M (o) i

Active Automata
Learnlng, e.g. L”

~\

J

#i0sds |

[)
Find evidence of

.

Verify ' against @
J

M £ M’
l Not Found

~\

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

@: Spec.

v
— M (o) # M (o)

v X w/ input o

Likely ¢ (¢ seems satisfied)

| Test M/ w/input o

X (¢ is violated)

M. Waga (Kyoto U.)

Test .7 with the Witnhess o

. Model checker returns ¢ € X* s.t.Vu € (24%)?.
M'(0) - u & @
. We check if we also have Yu € 22, M (o) - u & @

- Note: We can do this because ¢ is safety and o regular
- Yes — we finish the testing

- No = ois an evidence of /# # M’

- We use o to refine P and S if we have /(o) # (o)

M. Waga (Kyoto U.)

Found o s.t.

M (o) # M (o)

M FE= M

[)
Find evidence of

l Not Found v

v

é)

Active Automata
Learning, e.g. L~

" ~ y

Likely ¢ (¢ seems satisfied)

Verify M’ against @}

[Peled et al., FORTE’99]

@: Spec.

v
— M (o) # M (o)

Black-Box Checking (BBC)
M a

s

Test .4 w/ input o

X w/ input o

~

,

T

X (¢ is violated)

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

M : a @: Spec.
Found o s.t. ¢ /
M (o) # M (o) " Active Automata |q—_ “#(0) # M (0)
Learnlng, e.g.L”)
- maie RN f / _t -
| Flnd ewdence of D/erly% agains ¢ st M w/ ot A
% #%, ! es w/ inpu GJ
Not Found X w/ input o l X

Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Equivalence Testing

Goal: find 0 € 2* s.t. #(0) # M (o) to refine §

Theoretically: Automata-based conformance test
e.d., W-method (chow, Tse'7s], Wp-method [Fujiwara+, TSE’91]

- & Equivalence can be guaranteed

- @ # of states is necessary for soundness

M and A’ are likely
Practically: Random sampling of 0 [z R ki il R e

- & PAC guarantee can be obtained [angluin, inf. Comput. 87)
- & Not good at “rare” cex

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

M : a @: Spec.
Found o s.t. ¢ v,
A (0) 7 M (0) " Active Automata |’ “#(0) # M (0)
Learnlng, e.g. L*)
i Find evidence of A Ve”fy A" against ¢ g N\

M+ M J&kTest M w/ input GJ

Not Found X w/ input o l X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

M) ¢: Spec.
Found o s.t. ‘ o/
M (o) #+ M (o) (Active Automata) 2 M(o) # M(0)
Learnlng, e.g.L”)
Difficult)
e e Vern‘y A’ against go r D
¢ Find ewdence of g Test 4/ w/ inbut
% #%,] ! es w/ inpu GJ
Not Found X w/ input o l X

Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Outline

- Preliminaries
- Active automata learning

- Black-box checking

- Techniques for efficient black-box checking
-+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

+ Specification-guided abstraction of system under test
-+ Java Toolkit FalCAuN for black-box checking

+ Probabilistic extension of black-box checking

M. Waga (Kyoto U.)

Equivalence Test Dedicated to BBG?

Eq. test for general automata learning: test overall equivalence

* (Conformance test: Ensure the equivalence for all the

transitions/states assuming the size of ./

 Random test. Ensure the equivalence for many input words

Observation: BBC’s goal is to show that . violates @
— How about focusing on “less safe” parts in eq. test?

Refinement of ./ ' focusing on

“less safe” parts of ./

M. Waga (Kyoto U.)

Robustness-Guided Equivalence Test

[Waga, HSCC’20]

Idea: sample “less safe” inputs by minimizing robustness

Robustness [rainekos & Pappas, Tcs'09): “distance” from unsafe area

Example: [(v < 120) 'Y Unsafe area

margin from unsafe area
(robustness)

Sample o € 2* with small robustness in equivalence test
Black-box optimization can be used

e.g. genetic algorithms
M. Waga (Kyoto U.)

Robustness-Guided Equivalence Test

Gen. population U C X*

No
Voe U. (o) = 4c)"? Return o

Yes
Gen. next population U’ Crossover and mutation
' POP in genetic algorithms

robustness of

M (o) wrt ¢ Selection: ¢ € U’ s.t.
p(M (o), @) is small

M. Waga (Kyoto U.)

Why p(.Z (o), ¢) as Fitness?

Assumption: /Z/ F ¢ Robustness
i.e. 30.p(M(0),p) <0 xp(M(0), @)+ p(M o), p)

Fact: /' F ¢ i.e.
Vo.p(M'(6),p) 20
by model checking

Heuristic: Find o s.t.
M (o) = M '(0) in
p(A (o),) is small

M. Waga (Kyoto U.)

Why p(.Z (o), ¢) as Fitness?

Assumption: /Z/ F ¢ Robustness
i.e. 30.p(M(0),p) <0 xp(M(0), @)+ p(M o), p)

Fact: /' F ¢ i.e.
Vo.p(M'(6),p) 20
by model checking

Heuristic: Find o s.t.
M (o) = M '(0) in
p(A (o),) is small

M and /' deviate

M. Waga (Kyoto U.)

Outline

- Preliminaries
- Active automata learning

- Black-box checking

- Techniques for efficient black-box checking
-+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

+ Specification-guided abstraction of system under test
-+ Java Toolkit FalCAuN for black-box checking

+ Probabilistic extension of black-box checking

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

M : a @: Spec.
Found o s.t. ¢ v,
A (0) 7 M (0) " Active Automata |’ “#(0) # M (0)
Learnlng, e.g. L*)
i Find evidence of A Ve”fy A" against ¢ g N\

M+ M J&kTest M w/ input GJ

Not Found X w/ input o l X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

M) ¢: Spec.
Found o s.t. ‘ o/
M (o) #+ M (o) (Active Automata) 2 M(o) # M(0)
Learnlng, e.g.L”)
Difficult)
e e Vern‘y A’ against go r D
¢ Find ewdence of g Test 4/ w/ inbut
% #%,] ! es w/ inpu GJ
Not Found X w/ input o l X

Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Finding a Deviation via Model checking
of Strengthened Spec.

Idea: find “near unsafe” inputs via model checking

Observation 1: model checking of . is typically more
efficient than equivalent testing

Running .Z for many times

- Particularly when running .Z is time consuming

Observation 2: 0 € X* s.t. M (o) # M '(0) and M '(0) € y
for a bit stronger y than ¢ is often useful for BBC

- Stronger: v C @

If Y Is much stronger than ¢, we cannot bias the learning

M. Waga (Kyoto U.)

BBC + Model checking with Strengthened Spec.

%. ¢ (B SpeC [Shijubo et al., RV'21]
Found 6 s.t. N v
Active Automata ,
M (o) # M'(c Learning, e.g. L* 2 M (o) # M (o)
I\ oSS
Test if r -
M (o) = M (o) Verify /' against ¢
Difficult V4 X w/input & \ ‘// X w/input &

: .;) P S V r j
t Find evidence of § - _
w Test ./ w/ input o

M F M i)

Not Found l X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

Verify /" against y
Yy,

M. Waga (Kyoto U.)

BBC + Model checking with Strengthened Spec.

M :

Found o s.t.

M(0) +# M'(o

‘4,‘

Difficult 14
| Find evidence of |

MF M
NotFound

M

v @: Spec.

r

.

Active Automata
Learning, e.g. L*

,

X2z

= M) |

[Shijubo et al., RV'21]

v

2 M (o) # M (o)

.

Verify /' against @

3 < - o Faees

Verify M’ against 1//

New

Likely ¢ (¢ seems satisfied)

X W/ iNnput ¢

r

.

Test ./ w/ input o

~

,

l x

X (¢ is violated)

M. Waga (Kyoto U.)

BBC + Model checking with Strengthened Spec.

M :

Found o s.t.

M(0) +# M'(o

(0) =

by
Difficult

| Find evidence of -

MF M
NotFound

y @: Spec.

r

.

Active Automata
Learning, e.g. L*

Testif [}

[Shijubo et al., RV'21]

v

2 M (o) # M (o)

v X w/ input ¢

Likely ¢ (¢ seems satisfied)

' against ¢

r

.

Test ./ w/ input o

~

,

l x

X (¢ is violated)

M. Waga (Kyoto U.)

BBC + Model checking with Strengthened Spec.

[Shijubo et al., RV’21]

1. Construct y that is (a bit) stronger than ¢

2. Model check .’ using v

o If A’ satisfies y, we move to equivalence test

3. Checkif M (o) = M '(0), where M '(0) & v
o If /(o) #% M '(0), we use o to refine M’

e Otherwise, we have /(c) & .
— we deem s too strong and generate a weaker

M. Waga (Kyoto U.)

Syntactic Strengthening for LTL

Syntactic rules to derive stronger LTL formulas

For any p,v € LTL, we have (uV v) — (LA v).
For any u € LTL, we have Ou — LOu.

For any 1 € LTL, we have LIOu — QL.
For any u € LTL, we have OUu — L.
For any pu € LTL and for any indices 1,7 € N L

have Ofegyp > Uiy
6. For any u.v € LTL, we have (U v) — (Cu A

St oo~

M. Waga (Kyoto U.)

Syntactic Strengthening for LTL

Syntactic rules to derive stronger LTL formulas

For a [1u is stronger than Ou
For any u & , we have Qu — LOu.
For any 1 € LTL, we have LIOu — QL.
For any u € LTL, we have OUu — L.
For any pu € LTL and for any indices 1,7 € N L

have Ofegyp > Uiy
6. For any u.v € LTL, we have (U v) — (Cu A

St oo~

M. Waga (Kyoto U.)

Syntactic Strengthening for LTL

Syntactic rules to derive stronger LTL formulas

For a [1u is stronger than Ou
For any u & , we have Qu — LOu.
For any 1 € LTL, we have LIOu — QL.
For any u € LTL, we have OUu — L.
For any pu € LTL and for any indices 1,7 € N L

have Q11— i -

St oo~

6. For any uhv € LTL, we have (U v) — (Cu A

Strengthening by changing
timing intervals

M. Waga (Kyoto U.)

Outline

- Preliminaries
- Active automata learning

- Black-box checking

- Techniques for efficient black-box checking
-+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

+ Specification-guided abstraction of system under test
-+ Java Toolkit FalCAuN for black-box checking

+ Probabilistic extension of black-box checking

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

M : a @: Spec.
Found o s.t. ¢ v,
A (0) 7 M (0) " Active Automata |’ “#(0) # M (0)
Learnlng, e.g. L*)
i Find evidence of A Ve”fy A" against ¢ g N\

M+ M J&kTest M w/ input GJ

Not Found X w/ input o l X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Black-Box Checking (BBC)

[Peled et al., FORTE’99]

M ¢: Spec.
Found o s.t. ¢ o/
M (o) # M (o) (Active Automata) 2 M(o) # M (o)
k Learning, e.g. L~)

Observation: an abstraction of .Z is enough
if the result of model checking is same

Verify " against @| 2

[)
Find evidence of

M+ M) 7N LTes’c.%w/lnput GJ

Not Found X w/ input o l X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Output Abstraction wrt Spec.

[Matsumoto et al., EMSOFT’25]

Spec ¢: Op V Oq

(Eventually p holds or
eventually q holds)

a/{p},
al{} b/{p,q}
_>
b/{} a/{q},
b/{q}

M. Waga (Kyoto U.)

Output Abstraction wrt Spec.

[Matsumoto et al., EMSOFT’25]

Spec ¢: Op V Oq

(Eventually p holds or
eventually q holds)

a/{p}, a/{p},
a/{} b/{p,q} al} O> b/{p}

Equivalent for the satisfaction of ¢

(p vs q is irrelevant for)

b/{} a/{q}, b/{} a/{p},
b/{q} b/{p}

M. Waga (Kyoto U.)

Output Abstraction wrt Spec.

[Matsumoto et al., EMSOFT’25]

Spec ¢: Op V Oq
Equivalent for the satisfaction of ¢ (Eventually p holds or
(p vs g is irrelevant for ¢) eventually q holds)

M. Waga (Kyoto U.)

Specification-guided Abstraction

One can control the granularity of abstraction

. Forv,v' € 24P y ~, v only if forany 6 € (2AP)2 e

have v-o Fy < V' o F yfor any subfml y of @

. M/ ~, is defined by mapping the outputs of /A

with a : 2% S T where I” = 24P/ ~ v

Violation (or satisfaction) is

Theorem witnessed by a finite trace

We have M F ¢ — M/ =, F @ forany safety or
co-safety property

M. Waga (Kyoto U.)

Learning of Abstracted System ./Z/ ~

Abstracted system can be leaned by changing outputs!

Learning .Z

/R
R e = 7 < 0or
R e / ‘
1o 2N L e --..‘f%r-,,,;,/ﬁ / PRy
. e R R,
o y Ve
o ol) ! .
- (P
i/ z
' e N, ,
_ A
g AR/ =
& y QR
S o K X
W / ww‘;‘;—ui,”a I e W
s e T
&/

Learning ./Z/ ~,

_ r
P s e A "
oy : 2 R - oy
= - P = ’
e J = / !
= Je J
R L
E L
bl 4
2)
B A
\
4 B [o \
iz (=1 w«»—}."i;.l.'..a SRR .
. P
A

Output a4
= rne—— Abstraction y, (::;_M LT

’ . HAP .
Return a:2" -1 Return /(o) € (2°°F)*
/Al X, O AWAGK=2% foroc € 2*

%k
forc € X M. Waga (Kyoto U.)

BBC w/ Specification-guided Abstraction

@: Spec
Found o s.t. S v
M1 ~o (0) # M (0) Active Automata o ~o (0) # M (0)

Learning, e.g. L*

[)

" Find evidence of Verify ' against @ " Test M/ P

M=, F M W/|nput0
- u u
Not Found X w/ input 0 i X
Likely ¢ (¢ seems satisfied) X (¢ is violated)

M. Waga (Kyoto U.)

Outline

- Preliminaries
- Active automata learning

- Black-box checking

- Techniques for efficient black-box checking
-+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

+ Specification-guided abstraction of system under test
- Java Toolkit FalCAuN for black-box checking

+ Probabilistic extension of black-box checking

M. Waga (Kyoto U.)

FalCAuN: A Toolkit for Black-Box Checking

Java library for Black-box checking
— Can be used from JVM languages

Free as in Freedom

Systems: MATLAB/Simulink, Python, Java

Spec: (discrete-time) STL/LTL

Implementing all three methods to enhance
the performance of BBC

They are orthogonal

— We can use all of them!

M. Waga (Kyoto U.)

Case Study: Insulin Pump

System: Type-1 Diabetes Simulator + RL-based
Controller of Insulin Pump

Simulator: simglucose implemented in Python

Requirements: Blood glucose level
should not be too low
: bg > 355

(meal A Xmeal)R(bg > 180 = Q[O,l]bg < 180)

Blood glucose level should

not be too high for a while
unless eating a lot

(meal A Xmeal)R(insulin > 0.5 = (1,08 < 180)

Executed on a workstation w/
CPU: Intel i9-10980XE, Blood glucose level should not be

RAM: 128484MiB, too high for a while after feeding
OS: Ubuntu 22.04 iInsulin unless eating a lot

M. Waga (Kyoto U.)

Result of the Case Study

Execution Time: 116.8727 sec

Counter example of (meal A Xmeal)R(insulin > 0.5 = <>[0,1]b8 < 180)

50 A

40 -

30 A

20 A

10 A

meal

300 A

250 -

200 A

150 A

100 A

50 A

Blood glucose level goes high

by "zig-zag eating”

outputs

M. Waga (Kyoto U.)

ApproximatelMeaIy Machine .7’

a: no meal

b: meal

a / bbbaaa \b / bbbaaa

M. Waga (Kyoto U.)

ApproximatelMeaIy Machine .7’

a: no meal

b: meal

a / bbbaaa \b / bbbaaa

not eating meal does not
change the state

M. Waga (Kyoto U.)

Outline

- Preliminaries
- Active automata learning

- Black-box checking

- Techniques for efficient black-box checking
-+ Robustness-guided equivalence testing
- Model checking of strengthened formulas

+ Specification-guided abstraction of system under test
-+ Java Toolkit FalCAuN for black-box checking

- Probabillistic extension of black-box checking

M. Waga (Kyoto U.)

Black-box Checking

[Peled et al., PSTV & FORTE’99]

Idea: Automata learning — formal verification!

Formal Verification

LA
pll o CEL R
8 _ . il Y
RTTIIBERE T e e L ittt W F
, |
;
4 \, /
L
3

Automata Learning

v

M. Waga (Kyoto U.)

Black-box Checking

[Peled et al., PSTV & FORTE’99]

Idea: Automata learning = formal verification!

Formal Verification

LU .,
Joy e X
o ey TONL A % il s
3~ o s
fsuey A e - EAPEREE " 7
w A o A | \
d U *’
(!
N
&

Automata Learning

v

System must be
deterministic!!

M. Waga (Kyoto U.)

Probabilistic Black-box Checking

[Shijubo et al., EMSOFT’23]

Idea: MDP learning — formal verification!

MDP Learning

e.g. L"mop

P-Satisfaction
‘ Prob.

M. Waga (Kyoto U.)

Probabilistic Black-box Checking

[Shijubo et al., EMSOFT’23]

Idea: MDP learning — formal verification!

MDP Learning

e.g. L"mop

P-Satisfaction
‘ Prob.

MDP: actions
+ trans. prob.

M. Waga (Kyoto U.)

Probabilistic Black-box Checking

[Shijubo et al., EMSOFT’23]

Idea: MDP learning — formal verification!

MDP Learning

e.g. L"mop

Estimate

MDP: acti
ACtions “safe” probability

+ trans. prob.

M. Waga (Kyoto U.)

What is MDP?

Model of stochastic system accepting inputs

Input sym. and
prob. of transition

M. Waga (Kyoto U.)

Strategy

Prob. distr. over input symbols at each state

M. Waga (Kyoto U.)

Strategy

Prob. distr. over input symbols at each state

M. Waga (Kyoto U.)

Strategy

Prob. distr. over input symbols at each state

Fixing a strategy
turns MDP to
Markov chain

M. Waga (Kyoto U.)

Strategy

Prob. distr. over input symbols at each state

Fixing a strategy
turns MDP to
Markov chain

Reachable in
prob. 0.5

M. Waga (Kyoto U.)

Probabilistic Black-box Checking

[Shijubo et al., EMSOFT’23]

M : %Q@l == (: Spec.
) . Found o' s.t.

Active MDP M(c') # M'(6')

LLearning, e.g. L*MDPJ

Far from p
M @égi@l o M(6) # M(5)

True prob. by “ (. . A
NS Compute max. sat. Find evidence of

el prob. of g in M’ _ MFMN

p W/ strateqy o *

Estimate sat. prob.
of @ in M w/ o

Not far from p lNot Found

stat. hypo.
testing

Not one input

Likely p

M. Waga (Kyoto U.)

Correctness in the Limit

Eventually returns the true max. prob. + exact MDP with prob. 1

Theorem (convergence):

If black-box system . satisfies several conditions, with
probability 1,

e learned MDP .# ' converges to ./ with finite iterations

* the estimated probability p converges to the true value

M. Waga (Kyoto U.)

Setting of Experiments

- Implemented in Python

- Show the results for 7 benchmarks mostly from literature

- The other results are in the paper

- Baseline: ProbBlackReach [Aichernig & Tappler, FMSD’19]

- Similar but using passive learning algorithm with &-
greedy sampling

- Java implementation

Google Cloud Platform c2-standard-4 instance (4 vCPU, 16GB RAM) with Debian 11

M. Waga (Kyoto U.)

Summary of the Results

Estimate max. prob.
— Larger is better

Slot machine

Ground Truth

0.510

Our Method

ProbBlackReach

0.480

Slot machine with 0.510 0.509 0.448
limited observation

MQTT 0.815 0.808 0.815

TCP 0.7/1 0.768 0.771

GridWorld Small 0.618 0.617 0.569

GridWorld Large 0.671 0.672 0.0683

0.250 0.251 0.218

SharedCoin

M. Waga (Kyoto U.)

Summary of the Results

Estimate max. prob.
— Larger is better

Ground Truth Our Method ProbBlackReach

Slot machine 0.510 | 0.507] 0.480
Slot machine with 0.510 ! 0509 0.448
limited observation
MQTT ST Always close 0.808 g 0.815
to ground truth |
TCP 0.771 g, 0768 0.771
GridWorld Small DHelE . 06174 0.569
GridWorld Large o ,{ 0.0683
SharedCoin 0.250 } 0251} 0.218

M. Waga (Kyoto U.)

Summary of the Results

Estimate max. prob.
— Larger is better

Ground Truth Our Method ProbBlackReach

Slot machine Bt : 0.507

Slot machine with 0.510 L' 0.509 ,
limited observation

MQTT 0.815 Always close 0.608 f
to ground truth ’

Not much close
to ground truth

TGP 0.771 0.768

GridWorld Small ot . 0617}

GridWorld Large 0.671

SharedCoin 0.230

M. Waga (Kyoto U.)

Summary of the Results

Estimate max. prob.
— Larger is better

Slot machine

Slot machine with
limited observation

MQTT
TCP
GridWorld Small
GridWorld Large

SharedCoin

Ground Truth

0.510
0.510

SHETs Always close

to ground truth
0.771 _

0.618
0.67/1

0.250

Our Method

0.509 {
0.808]

0.768}

0.617 |

ProbBlackReach

Not much close
to ground truth

Far from ‘
ground truth Ve———.

M. Waga (Kyoto U.)

Summary of the Results

ProbBlackReach o
Ours A

-
Sy
O

04 i é y .‘ .’ @ A‘ .

~ V.G O @9 009 OG0 ¢ 0 ¢ ©
0.4 3

0.35 pik
0.3 1 i
0.25 t i
0.2 _
.15 | | | | | |
0 10 20 30 40 50 60 70
Number of steps on the SUT |x 100, 000

M. Waga (Kyoto U.)

Best estimated probability

Summary of the Results

ProbBlackReach may ProbBlackReach ©

iIncrease faster
Ours A

B 88700 At

0.45 L A@ © e 009 009 % o ®

.15 | | | | | |
0 10 20 30 40 50 60 70
Number of steps on the SUT |x 100, 000

Best estimated probability
-
o
Ot

M. Waga (Kyoto U.)

Summary of the Results

Propdlackfeach may ProbBlackReach e Ours
increase faster .
Ours 4 saturates better
. 055 | | | |

B8 8% 0t

0.45 L @t © e 009 009 % o ®

0.25 t ;
0.2)
0.15 |

Best estimated probability
-
o
Ot

0 10 20 30 40 50 60 70
Number of steps on the SUT |x 100, 000

M. Waga (Kyoto U.)

Conclusions

+ One can systematically test black-box systems with
black-box checking

- ldea: Automata learning + model checking

+ We proposed several techniques to enhance the
efficiency of black-box checking

- A probabilistic extension is also available
{

Automata L . Formal Verification
oA FEATing with Model Checking

X

M. Waga (Kyoto U.)

Some Future Directions

- Extension of black-box checking for, e.qg.

- continuous-time systems
- Timed automata
- Hybrid automata

- Infinite alphabet
- Symbolic automata
- Nominal automata

- More expressive automata
- Visibly pushdown automata

- Use of white-box information of the system for gray-box systems

- More practical case study

M. Waga (Kyoto U.)

How About Direct Comparison?

- Direct comparison is also available e.g. [Abbas+, MEMOCODE’14]

- Potential Issue: more local maxima

Cont. vs Cont. Cont. vs Disc.

Output Output
M (u)

A (1)

Input Input

M. Waga (Kyoto U.)

Example on Jupyter w/ Kotlin

. Jupyter ATS1-step-5 Last Checkpoint: 13 days ago

File Edit
B + X

Not Trusted

Use Kotlin to load the system, write

View Run Kernel Settings Help

spec, visualize the results, ...

0O [» ®m C » Markdown Kotlin O =

val initScript = """

versionString = version('-release');
oldpath = path;
path(strcat(userpath, '/Examples/R', versionString, '/simulink_automotive/ModelingAnAutomaticTransmissionControllerExample/'), oldpath);

mdl = 'Autotrans_shift';
load_system(mdl);

val paramNames = listOf("throttle", "brake")
val signalStep = 5.0
val simulinkSimulationStep = 0.0025

// Load the automatic transmission model. This must be manually closed!!
val sul = SimulinkSUL(initScript, paramNames, signalStep, simulinkSimulationStep)

Definition of the STL properties

import java.io.BufferedReader
import java.io.StringReader

// Define the input and output mappers
val throttleValues = 1ist0f(0.0, 100.0)
val brakeValues = 1ist0f(0.0, 325.0)
val inputMapper = InputMapperReader.make(listOf(throttlevalues, brakeValues))
val ignoreValues = listOf(null)
val velocityValues = list0f(20.0, 40.0, 60.0, 80.0, 100.0, 120.0,)
val accelerationValues = listOf()
val gearValues = listOf(null)
val outputMapperReader = OutputMapperReader(1listOf(ignoreValues, accelerationValues, gearValues, velocityValues))
outputMapperReader.parse()
val mapperString = listOf("previous_max_output(@)").joinToString("\n")
val signalMapper: ExtendedSignalMapper = ExtendedSignalMapper.parse(BufferedReader(StringReader(mapperString)))
assert(signalMapper.size() == 1)
val mapper =
NumericSULMapper(inputMapper, outputMapperReader.largest, outputMapperReader.outputMapper, signalMapper)

Example on Jupyter w/ Kotlin

Approximate Mealy

machine ' l

| s0 fiiuu agab / aaaa

aaaa

.lb aaac

bb / aaac 'bu aaaa

velocity of a car too large ° |

Input signal to make the

ba/aaac \aa/aaad lab/aaad aa / aaadlab / aaad /
Input to falsify: [] (output(3) < 120.000000) N
ba / aaad | s3) _)aa/aaad
— bb / aaad[ab / aaad/bb / aaad b / aaad
§_ 50 < N\
. db aaae ° / ba / asad
0 T T T T T T T T T T g
0 2 4 6 8 10 12 14 16 1¢ bb / aaae _aa / aaae \ab / aaae / ba / aaad
time g
Output to falsify[] (output(3) < 120.000000) { 57)
100 ba / aaae a_xhu aaae
8 p S
Q N
5 50 bb / aaae | SR)
o)
0 hl aaaf \ba / aaaf
0 2 4 6 8 10 12 14 16 18

. ‘vv"’,,——.‘_:\y“"".,,r—" —
time | s9 |§=aalaaagbb /aaagab /aaagha / aaag

M. Waga (Kyoto U.)

